AL-FARABI KAZAKH NATIONAL UNIVERSITY

INFORMATION about publication activity DEPARTMENT OF PHYSICS AND TECHNOLOGY

№	Наименова	Выходные данные	Аннотация статьи	Ссылка для цитирования (Ф.И.О., название
	ние	(doi статьи)		статьи, название, номер и/или выпуск, том
	публикации			журнала, страницы,
				doi статьи)
		Кафе	дра теоретической и ядерной ф	ризики
1.	Elena	DOI	An approach for measuring	Determination of the primary energy using an ultrathin
	Dmitrieva,	10.1088/1361-	energy of cosmic-ray particles	calorimeter
	Anastasiya	6471/ab67e7	with energies $E > 10^{12} \text{ eV}$	J. Phys. G: Nucl. Part. Phys. 47 035202, 2020
	Fedosimova,		using an ultrathin calorimeter	
	Igor		is presented. The method is	
	Lebedev,		based on the analysis of the	
	Abzal		correlation dependence of the	
	Temiraliev,		cascade size on the rate of	
	Medeu		development of the cascade	
	Abishev,		process. In order to determine	
	Tolegen		the primary energy,	
	Kozhamkulo		measurements are made based	
	v, Andrey		on the number of secondary	
	Mayorov and		particles in the cascade, N e, at	
	Claudio		two observation levels Z_1 and	
	Spitaleri		Z ₂ , separated by an absorber	
			layer. Based on the obtained	
			measurements, a correlation	
			analysis of the dependence of	

	-		,	
			$logN_e(Z_1)$ on the difference d	
			$N = log N_e(Z_1) - log N_e(Z_2)$ is	
			carried out. The correlation	
			curves (logN e from d N) in the	
			negative part of the dN axis are	
			almost parallel to each other	
			and practically do not depend	
			on the depth of the cascade	
			development. It makes it	
			possible to determine the	
			primary energy using an	
			ultrathin calorimeter. The best	
			option for applying the method	
			is a calorimeter, which has a	
			unit with a heavy target,	
			leading to the rapid	
			development of the cascade,	
			and a homogeneous measuring	
			and absorption block. © 2020	
			The Author(s). Published by	
			IOP Publishing Ltd.	
2.	Nassurlla M.,	DOI	The angular distributions	New measurements and reanalysis of 14N elastic
	Burtebayev	10.1140/epja/s1005	of ¹³ C elastically scattered	scattering on 10B target
	N.,	0-021-00539-z	by ⁹ Be nuclei were measured at	Chinese Physics C, V.44(10), P.104103, 2020
	Sadykov		E_{Lab} (¹³ C) = 16.25 and	
	T.Kh.,		19.5 MeV. The measured	
	Boztosun I.,		angular distributions were	
	Amangeldi		analyzed via the optical model	
	N., Alimov		and the DWBA within the	
	D.,		coupled reaction channels	
	Kerimkulov		methods. In addition to this, the	
	Zh.,		previously obtained data were	
	Burtebayeva		reanalyzed at energies $E_{Lab} =$	

	J., Nassurlla,		22.75, 28.12, 36.15, 57.77 and	
	M.,		72.88 MeV. The aim of the	
	Kurakhmedo		study was to elucidate the role	
			•	
	v A., Sakuta		of the α -cluster transfer	
	S.B.,		mechanism in the large-angle	
	Karakoc M.,		scattering. As a result of these	
	Ibraheem		calculations, the optimal	
	A.A.,		parameters of the potentials	
	Kemper		and their energy dependence	
	K.W.,		were obtained for ¹³ C+ ⁹ Be	
	Hamada Sh.		nuclear system. The data at the	
			backward angles are fairly well	
			reproduced. The spectroscopic	
			amplitudes were extracted for	
			the ${}^{13}\text{C} \rightarrow {}^{9}\text{Be} + \alpha$	
			configuration at various	
			energies. The results are	
			compared with previously	
			reported values. © 2021, The	
			Author(s), under exclusive	
			licence to Società Italiana di	
			Fisica and Springer-Verlag	
			GmbH Germany, part of	
	D 11	DOL	Springer Nature.	
3.	Boshkayev	DOI	We investigate the dark matter	Imprint of pressure on characteristic dark matter
	K.,	10.3390/galaxies80	distribution in the spiral galaxy	profiles: The case of ESO0140040
	Konysbayev	40074	ESO0140040, employing the	Galaxies, 2020, 8(4),
	Т.,		most widely used density	c. 1-13, 74
	Kurmanov		profiles: the pseudo-isothermal,	
	E.,		exponential sphere, Burkert,	
	Luongo O.,		Navarro-Frenk-White, Moore	
	Muccino M.		and Einasto profiles. We infer	
			the model parameters and	

estimate the total dark matter content from the rotation curve data. For simplicity, we assume that dark matter distribution is spherically symmetric without accounting for the complex structure of the galaxy. Our predictions are compared with previous results and the fitted parameters are statistically confronted for each profile. We thus show that although one does not include the galaxy structure it is possible to account for the same dynamics assuming that dark matter provides a non-zero pressure in the Newtonian approximation. In this respect, we solve the hydrostatic equilibrium equation and construct the dark matter pressure as a function for each profile. Consequently, we discuss the dark matter equation of state and calculate the speed of sound in dark matter. Furthermore, we interpret our results in view of our approach and we discuss the role of the refractive index as an observational signature to discriminate between our approach and the standard one.

			© 2020 by the authors. Licensee MDPI, Basel, Switzerland.	
4	D 11	DOL		37
4.	Boshkayev	DOI 10.1140/ : / 1005	We investigate neutrino	Neutrino oscillation
	K.,	10.1140/epjc/s1005	oscillation in the field of an	in the q-metric
	Luongo O.,	2-020-08533-3	axially symmetric space-time,	European Physical Journal C,
	Muccino M.		employing the so-called q-	2020, 80(10), 96
			metric, in the context of	
			general relativity. Following	
			the standard approach, we	
			compute the phase shift	
			invoking the weak and strong	
			field limits and small	
			deformation. To do so, we	
			consider neutron stars, white	
			dwarfs and supernovae as	
			strong gravitational regimes	
			whereas the solar system as	
			weak field regime. We argue	
			that the inclusion of the	
			quadrupole parameter leads to	
			the modification of the well-	
			known results coming from the	
			spherical solution due to the	
			Schwarschild space-time.	
			Hence, we show that in the	
			solar system regime,	
			considering the Earth and Sun,	
			there is a weak probability to	
			detect deviations from the flat	
			case, differently from the case	
			of neutron stars and white	
			dwarfs in which this	

			probability is larger. Thus, we	
			heuristically discuss some	
			implications on constraining	
			•	
			the free parameters of the	
			phase shift by means of	
			astrophysical neutrinos. A few	
			consequences in cosmology	
			and possible applications for	
			future space experiments are	
			also discussed throughout the	
			text. © 2020, The Author(s).	
5.	Boshkayev	DOI	We consider the observational	Accretion disc luminosity for black holes surrounded by
	K., Idrissov	10.1093/mnras/staa	properties of a static black hole	dark matter
	A.,	1564	space-time immersed in a dark	Monthly Notices of the Royal Astronomical Society,
	Luongo O.,		matter envelope. We	2020, 496(2), c. 1115-1123
	Malafarina		investigate how the	
	D.		modifications to geometry	
			induced by the presence of	
			dark matter affect the	
			luminosity of the black hole's	
			accretion disc. We show that	
			the same disc luminosity as	
			produced by a black hole in	
			vacuum may be produced by a	
			smaller black hole surrounded	
			by dark matter under certain	
			conditions. In particular, we	
			demonstrate that the luminosity	
			of the disc is markedly altered	
			by the presence of dark matter,	
			suggesting that the mass	
			estimation of distant	
			supermassive black holes may	

6.	Dubovichenk	DOI	be changed if they are immersed in dark matter. We argue that a similar effect holds in more realistic scenarios, and we discuss the refractive index related to dark matter lensing. Finally, we show how the results presented here may help to explain the observed luminosity of supermassive black holes in the early Universe. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society Within the framework of the	Influence of resonances on
	o, S.B., Burkova,	10.1016/j.astropartp hys.2020.102481	modified potential cluster model with a classification of	the $11B(n,\gamma)12B$ capture reaction rate. Capture to the ground state of $12B$
	N.A.,	11y3.2020.102401	orbital states according to	Astroparticle Physics,
	Dzhazairov-		Young diagrams, the	Volume 123, 102481, 2020
	Kakhramano		possibility of describing	, ,
	v, A.V.,		experimental data for total	
	Tkachenko,		cross sections of the neutron	
	A.S.		radiative capture on ¹¹ B to the	
			ground state of ¹² B at energies	
			of 10 meV (1 meV = 10^{-3} eV)	
			to 7 MeV was considered. It	
			was shown that, taking into account only the E1 transition	
			from the S state of the n ¹¹ B	
			scattering to the ground state	
			of ¹² B, it is quite possible to	

shown that the inclusion of low-lying resonance states makes a significant contribution to the reaction rate, starting already with temperatures of 0.2–0.3 T ₉ . © 2020 7. Vladimir Dzhunushalie v, Vladimir Folomeev 10.1142/S02198878 20501923 20501923 20501923 20501923 20501923 20501923 20501924 20501924 20501924 20501924 20501924 20501924 20501924 20501924 2050192 205019	D _v	zhunushalie v, Vladimir	10.1142/S02198878	low-lying resonance states makes a significant contribution to the reaction rate, starting already with temperatures of 0.2–0.3 T ₉ . © 2020 Within F(B2) modified Weyl gravity, we consider a model of a spin-1/2 electric charge consisting of interior and exterior regions. The interior region is determined by quantum gravitational effects whose approximate description is carried out using Weyl gravity nonminimally coupled to a massless Dirac spinor field. The interior region is embedded in exterior Minkowski spacetime, and the	Weyl gravity International Journal of Geometric Methods in Modern
---	----------------	----------------------------	-------------------	--	---

	'		'	,
			that mass, electric charge, and	
			spin of the object suggested	
			may be the same as those for a	
			real electron. © 2020 World	
			Scientific Publishing	
			Company.	
8.	Vladimir	DOI	We consider non-Abelian	Proca tubes with the flux of the longitudinal
	Dzhunushalie	10.1140/epjc/s1005	SU(3) Proca theory with a	chromoelectric field and the energy flux/momentum
	v, Vladimir	2-020-08633-0	Higgs scalar field included.	density
	Folomeev		Cylindrically symmetric	Eur. Phys. J. C, (2020) 80:1043
			solutions describing classical	•
			tubes either with the flux of a	
			longitudinal electric field or	
			with the energy flux (and hence	
			with nonzero momentum	
			density) are obtained. It is	
			shown that, in quantum Proca	
			theory, there can exist tubes	
			both with the flux of the	
			longitudinal electric field and	
			with the energy	
			flux/momentum density	
			simultaneously. An imaginary	
			particle – Proca proton – in	
			which 'quarks' are connected	
			by tubes with nonzero	
			momentum density is	
			considered. It is shown that this	
			results in the appearance of the	
			angular momentum related to	
			the presence of the non-	
			Abelian electric and magnetic	
			fields in the tube, and this	
			ficius in the tube, and tills	

momentum is a part of
a proton spin. © 2020,
The Author(s).
ider the sets of Dirac- Dirac/Rarita-Schwinger plus Maxwell theories in R ×
kwell and Rarita- S3 spacetime in the Hopf coordinates
er-Maxwell equations International Journal of Geometric Methods in Modern
spacetime. Using the Physics, Vol. 17, No. 13 (2020) 2050197 (17 pages)
rdinates, we show that
e equations allow
ion of variables and
the corresponding
tic and numerical
utions. It is also
crated that the current
irac field is related to
invariant on the S3 \rightarrow
ation. © 2020 World
entific Publishing
Company.
2 gravity, we study the On the linear stability of polytropic fluid spheres in R2
stability of strongly gravity
itating spherically International Journal of Geometric Methods in Modern
etric configurations Physics Vol. 17, No. 11 (2020) 2050165
l by a polytropic fluid.
lations are carried out
Jordan frame. It is
ated that, as in general
y, the transition from
to unstable systems
t the maximum of the
ass-central density of
I. © World Scientific
lishing Company
s T s D so it in VI st O f as e T s D in C u e r t; ar in C

11.	Vladimir	DOI	We consider thermodynamic	Thermodynamics and statistical physics of
	Dzhunushalie	10.1142/S02177323	properties of a quark-gluon	quasiparticles within the quark gluon plasma model
	v, Vladimir	20501941	plasma related to quasiparticles	Modern Physics Letters A, Vol. 35, No. 23 (2020)
	Folomeev,		having the internal structure.	2050194
	Tlekkabul		For this purpose, we employ a	
	Ramazanov		possible analogy between	
	and Tolegen		quantum chromodynamics and	
	Kozhamkulo		non-Abelian Proca-Dirac-	
	V		Higgs theory. The influence of	
			characteristic sizes of the	
			quasiparticles on such	
			thermodynamic properties of	
			the quark-gluon plasma like the	
			internal energy and pressure is	
			studied. Sizes of the	
			quasiparticles are taken into	
			account in the spirit of the van	
			der Waals equation but we take	
			into consideration that the	
			quasiparticles have different	
			sizes, and the average value of	
			these sizes depends on	
			temperature. It is shown that	
			this results in a change in the	
			internal energy and pressure of	
			the quark-gluon plasma. Also,	
			we show that, when the	
			temperature increases, the	
			average value of characteristic	
			sizes of the quasiparticles	
			increases as well. This leads to	
			the occurrence of a phase	
			transition at the temperature at	

			which the volume occupied by the quasiparticles is compared with the volume occupied by the plasma. © 2020 World Scientific Publishing Company.	
12.	Vladimir Dzhunushalie v, Vladimir Folomeev, Tlekkabul Ramazanov, Arislan Makhmudov and Tolegen Kozhamkulo v	DOI 10.1088/1402- 4896/ab9791	We consider non-Abelian Proca theories with extra fundamental fields included. In the case of SU(2) Proca theory with nonlinear scalar and spinor fields, we obtain spherically symmetric regular solutions describing particlelike configurations with finite energy. For such systems, we find the energy spectrum and show the presence of a mass gap. In the case of SU(3) Proca theory with a nonlinear scalar field, we obtain cylindrically symmetric solutions describing tubes either with the flux of a longitudinal electric field or with the energy flux or with both of them. It is shown that the tubes with the energy flux may contribute considerably to the Proca proton spin. Consistent with all of this, we have argued that non-Abelian Proca theories containing extra	Non-Abelian Proca theories with extra fields: particlelike and flux tube solutions Phys. Scr. 95 (2020) 074013 (7pp)

			fields may approximately	
			fields may approximately	
			describe some phenomena in	
			QCD. © 2020 IOP Publishing	
			Ltd.	
13.	A.	DOI	Purposeful investigation of	Measurements of the low-energy neutron and gamma
	Shepetov, A.	10.1140/epjp/s1336	radiation fluxes strongly	ray accompaniment of extensive air showers in the knee
	Chubenko, B.	0-019-00092-1	delayed in relation to the main	region of primary cosmic ray spectrum
	Iskhakov, O.		particle front of extensive air	European Physical
	Kryakunova,		shower (EAS) was undertaken	Journal Plus, 135, 2020
	O.		at the Tien Shan Mountain	
	Kalikulov, S.		Cosmic Ray Station. It was	
	Mamina, K.		found that the passage of the	
	Mukashev, V		EAS can be accompanied by	
	. Piscal, V.		the delayed thermal neutrons	
	Ryabov, N.		and by the soft (30–50) keV	
	Saduyev, T.		gamma rays, mostly	
	Sadykov, N.		concentrated within a region of	
	Salikhov, E.		about (5–10) m around the	
	Tautaev, L.		shower axis, where the integral	
	Vil'danova, V		radiation fluence can vary in	
	. Zhukov		the limits of $(10^{-4}-1)$ cm ⁻² for	
			neutrons, and of (0.1 - 1000)	
			cm ⁻² for gamma rays. The	
			dependence of signal	
			multiplicity on the shower size	
			N _e has a power shape both for	
			the neutron and gamma ray	
			components, with a sharp	
			increase of its power index	
			around the value of $N_e \approx 10^{-6}$,	
			which corresponds to the	
			position of the 3×10^{15} eV	
			knee in the primary cosmic ray	
			knee in the primary cosmic ray	

14.	Zhusupov M.A., Zhaksybekov a K. A., Kabatayeva R. S	DOI 10.3103/S10628738 20100317	spectrum. The total duration of detectable radiation signal after the EAS passage can be of some tens of milliseconds in the case of neutron component, and up to a few whole seconds for gamma rays. The delayed accompaniment of low-energy radiation particles can be an effective probe to study the interaction of the hadronic component of EAS. © 2020, Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature. Abstract: The excitation spectra of the 10 B nucleus in the lithium reactions of triton and α -particle cluster transfer were calculated via summation of the corresponding spectroscopic S-factors within the multiparticle shell model. It is shown that the difference between the excitation spectra of the 10 B nucleus in the lithium reactions of α -cluster transfer on 6 Li nucleus and in the reaction of 6 Li(α , γ) 10 B radiative capture is due to structural features of the states of the 10 B nucleus in the near-	Cluster Structure of ¹⁰ B Nucleus Levels Bull. Russian Ac. of Sc. Phys. – 2020. –V. 84, No. 10. – P. 1175–1178
-----	--	--------------------------------------	---	---

			threshold region. © 2020,	
			Allerton Press, Inc.	
15.	A.V. Yushkov, V. V. Dyachkov, Y A. Zaripova	DOI 10.3103/S10628738 20100305	Abstract: Multineutron coupled systems (quasi-nuclei) have yet to be found, despite numerous targeted searches. However, a number of theoretical studies show that the existence of multineutron systems is possible. A new direct approach to detecting multineutron systems is proposed using kinematic features of elastic scattering. The critical angles of multineutrons with respect to the closest lightest nuclei are calculated, demonstrating the clear kinematic difference between dineutrons (2n), trineutrons (3n), and tetraneutrons (4n). © 2020,	A New Approach to the Experimental Detection and Study of Multineutrons Bulletin of the Russian Academy of Sciences: Physics, 2020, 84(10), P. 1183-1186
			Allerton Press, Inc.	
16.	Y. Mukhamejan ov, G. Alieva , D. Alimov, G. Kabdrakhimo va, M. Nassurlla, N. Saduyev B.M.	DOI 10.5506/APhysPolB .51.783	Double-differential and integral cross sections of the (p, xp) and (p, x α) reactions on the 103 Rh nucleus were measured at $E_p = 30$ MeV using a proton beam delivered by the U-150M cyclotron of the Institute of Nuclear Physics (Almaty, Kazakhstan). A self-	Investigation of (p,xp) and (p,xa) Reactions of 30-MeV Protons with the 103Rh Nucleus Acta Physica Polonica B, V51(3), P.783, 2020

	Sadykov, T.K. Zholdybayev, K.M. Ismailov, Y. Kucuk		sustaining ¹⁰³ Rh foil of 3 µm thickness was used as a target. The obtained experimental results were compared with the TENDL-2019 nuclear data library, which provides the output of the TALYS nuclear model code. We assert that the TENDL-2019 evaluations provide a valid description of the obtained experimental data. © 2020 Jagellonian University. All rights reserved.	
17.	M. Muccino, L. Izzo, O. Luongo, K. Boshkayev, L. Amati, M. Della Valle, G. B. Pisani, E. Zaninoni.	DOI 10.3847/1538- 4357/abd254	Observations of gamma-ray bursts up to z ~ 9 are best suited to study the possible evolution of the universe equation of state at intermediate redshifts. We apply the Combo relation to a sample of 174 gamma-ray bursts to investigate possible evidence of evolving dark energy parameter w(z). We first build a gamma-ray burst Hubble's diagram and then we estimate the set (Ω m, ΩΛ) in the framework of flat and nonflat ΛCDM paradigm. We then get bounds over the wCDM model, where w is thought to evolve with redshift, adopting two priors over the Hubble	Tracing Dark Energy History with Gamma-Ray Bursts The Astrophysical Journal (2021), 908:181 (11pp)

constant in tension at 4.4σ , i.e., $H 0 = (67.4 \ 0.5) \text{ km s-1 Mpc-1}$ and H $0 = (74.03 \ 1.42) \text{ km s-1}$ Mpc-1. We show our new sample provides tighter constraints on Ω m since at $z \le$ 1.2 we see that w(z) agrees within 1σ with the standard value w = -1. The situation is the opposite at larger z, where gamma-ray bursts better fix w(z) that seems to deviate from w = -1 at 2σ and 4σ level. depending on the redshift bins. In particular, we investigate the w(z) evolution through a piecewise formulation over seven redshift intervals. From our fitting procedure we show that at z > 1.2 the case w < -1cannot be fully excluded, indicating that dark energy's influence is not negligible at larger z. We confirm the Combo relation as a powerful tool to investigate cosmological evolution of dark energy. Future space missions will significantly enrich the gamma-ray burst database even at smaller redshifts, improving de facto the results discussed in this paper. © 2021. The

			American Astronomical	
			Society. All rights reserved	
18.	K.	DOI	We investigate the dark matter	Imprint of Pressure on Characteristic Dark Matter
10.		10.3390/galaxies8040074	distribution in the spiral galaxy	Profiles: The Case of ESO0140040
	Boshkayev, T.	10.5590/galaxies6040074	ESO0140040, employing the	Galaxies (2020), 8, 74
	· ·			Galaxies (2020), 6, 74
	Konysbayev, E.		most widely used density	
			profiles: the pseudo-isothermal,	
	Kurmanov,		exponential sphere, Burkert,	
	O. Luongo,		Navarro-Frenk-White, Moore	
	M. Muccino		and Einasto profiles. We infer	
			the model parameters and	
			estimate the total dark matter	
			content from the rotation curve	
			data. For simplicity, we assume	
			that dark matter distribution is	
			spherically symmetric without	
			accounting for the complex	
			structure of the galaxy. Our	
			predictions are compared with	
			previous results and the fitted	
			parameters are statistically	
			confronted for each profile. We	
			thus show that although one	
			does not include the galaxy	
			structure it is possible to	
			account for the same dynamics	
			assuming that dark matter	
			provides a non-zero pressure in	
			the Newtonian approximation.	
			In this respect, we solve the	
			hydrostatic equilibrium	
			equation and construct the dark	
			matter pressure as a function	

19.	Burkova, N.A., Dubovi chenko, S.B., Dzhazai rov- Kakhramano v, A.V., Nurakh metova, S.Z.	DOI 10.1088/1361- 6471/abe2b5	for each profile. Consequently, we discuss the dark matter equation of state and calculate the speed of sound in dark matter. Furthermore, we interpret our results in view of our approach and we discuss the role of the refractive index as an observational signature to discriminate between our approach and the standard one. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Within the framework of the modified potential cluster model with forbidden states and their classification according to Young diagrams, the possibility of describing experimental data on the total cross sections of the neutron radiative capture on ⁷ Li is considered. It is shown that the	Comparative role of the 7Li(n, γ) reaction in Big Bang nucleosynthesis Journal of Physics G: Nuclear and Particle Physics, 2021, V 48(4), 045201 (21pp)
	v, A.V., Nurakh		experimental data on the total cross sections of the neutron radiative capture on ⁷ Li is	
			available. Based on the calculated total cross sections	

			up to 5 MeV, the reaction rate is calculated and its analytical approximation is carried out. Resonance structure of $^7\text{Li}(n, \gamma)^8\text{Li}$ cross section and its impact on the reaction rate is examined. It is shown that the $^7\text{Li}(n, \gamma)^8\text{Li}$ reaction dominates at $T_9 < 0.1$ as opposed to the burning of ^7Li in the $^7\text{Li}(^3\text{H}, n)^9\text{Be}$ and $^7\text{Li}(^4\text{He}, \gamma)^{11}\text{B}$ reactions, but comparable to (d, γ) , (d, p) , and (p, γ) at $T_9 \sim 1$. © 2021	
20.	Dubovichenk	DOI	the UK The total cross sections of the	$12B(n,\gamma)13B$ reaction as an alternative path to
	О,	10.1016/j.nuclphysa	neutron radiative capture	astrophysical synthesis of 13C isotope
	S.B., Burkov	.2021.122197	on ¹² B at astrophysical energies	Nuclear Physics A, 2021, V 1011, P. 122197 (17pp)
	a,		to the ground state of ¹³ B, have	
	N.A., Dzhaza		been calculated in the energy	
	irov-		range of 10^{-8} to 10 MeV within	
	Kakhramano		the framework of a modified	
	v, A.V., Yertaiu		potential cluster model with the classification of orbital states	
	ly, A.		according to Young diagrams.	
	15, 11.		Reaction rates in the	
			temperature range of 0.01 to 10	
			T ₉ , and their analytical	
			parameterizations were	
			obtained. The calculated rates	
			of $^{12}B(n,\gamma)^{13}B$ excess the	
			previous results obtained by	

21.	Bahtiyar Sadykov, Timur Zholdybayev, Nassurlla Burtebayev, Bek Duisebayev, Maulen Nassurlla, Jumazya Burtebayeva , Marzhan Nassurlla , Stanislav Sakuta,	DOI 10.1140/epja/s1005 0-021-00415-w	other approaches by approximately to one order of magnitude. Cross sections and reaction rates of ¹² C(n,γ ₀₊₁₊₂₊₃) ¹³ C are calculated and compared to the n ¹⁰ B, n ¹¹ B, n ¹² B, and p ¹² C reaction rates. It is proposed that the obtained rates of the ¹² B(n,γ) ¹³ B reaction may be suggested for the discussion of novel scenarios of stable isotope ¹³ C synthesis when p-captures on ¹² C are not present. © 2021 Elsevier B.V. Differential cross sections of elastic and inelastic scattering with excitation of states of the rotational band of the ground state of ²⁴ Mg were measured at an α-particle energy of 50.5 MeV and ³ He 60 MeV. The angular distributions were analyzed using an optical model and a coupled channel method. A number of potentials with significantly different geometries are obtained, which describe well the elastic scattering at the measured angular range. The	Scattering of α -particles and 3 He by 24 Mg nuclei at energies about 50–60 MeV European Physical Journal A Volume 57, Issue 4, April 2021, Номер статьи 130
	Stanislav		the elastic scattering at the	

			channel method. In addition to the ground state, three low-	
			lying states of ²⁴ Mg, 2 ⁺ (1.368 MeV), 4 ⁺ (4.122 MeV), and	
			4.238 MeV (2 ⁺), were included	
			in the coupling scheme. The	
			values of quadrupole (β_2) and	
			hexadecapole (β_4) deformation	
			parameters were extracted.	
			According to the analysis of	
			scattering of α -particles, they	
			are 0.52 and 0.05 . For 3 He,	
			they are 0.75 and 0.07,	
			respectively. The extracted	
			parameters correspond to the	
			previously obtained values	
			from the scattering of protons,	
			deuterons and α -particles. ©	
			2021, The Author(s), under	
			exclusive licence to Società	
			Italiana di Fisica and Springer- Verlag GmbH Germany, part	
			of Springer Nature.	
22.	V.	DOI	Within vacuum Weyl gravity,	Masking singularities in Weyl gravity and Ricci flows
22.	Dzhunushalie	10.1140/epjc/s1005	we obtain a solution by which,	Eur.Phys.J.C 81 (2021) 5, 387
	v and V.	2-021-09188-4	using different choices of the	2021) 5, 507
	Folomeev	2 021 03100 1	conformal factor, we derive	
			metrics describing (i) a bounce	
			of the universe; (ii) toroidal	
			and spherical wormholes; and	
			(iii) a change in metric	
			signature. It is demonstrated	
			that singularities occurring in	

	, ,			
			these systems are "masked".	
			We give a simple explanation	
			of the possibility of masking	
			the singularities within Weyl	
			gravity. It is shown that in the	
			first and third cases the three-	
			dimensional metrics form Ricci	
			flows. The question of the	
			possible applicability of	
			conformal Weyl gravity as	
			some phenomenological theory	
			in an approximate description	
			of quantum gravity is	
			discussed. © 2021, The	
			Author(s).	
23.	V.	DOI	We consider the Dirac equation	Nonperturbative quantization approach for QED on the
23.	Dzhunushalie	10.3390/universe70	and Maxwell's	Hopf bundle
	v and V.	30065	electrodynamics in R ×	Universe 7, (2021) no.3, 65
	Folomeev,	20002	S ³ spacetime, where a three-	om/eise /, (2021) hois, or
	1 01011100 ,		dimensional sphere is the Hopf	
			bundle $S^3 \rightarrow S^2$. In both cases,	
			discrete spectra of classical	
			solutions are obtained. Based	
			on the solutions obtained, the	
			quantization of free,	
			noninteracting Dirac and	
			Maxwell fields is carried out.	
			The method of nonperturbative	
			quantization of interacting	
			Dirac and Maxwell fields is	
			suggested. The corresponding	
			operator equations and the	
			infinite set of the Schwinger—	
			minute set of the schwinger—	

24.	V.	DOI	Dyson equations for Green's functions is written down. We write a simplified set of equations describing some physical situations to illustrate the suggested scheme of nonper-turbative quantization. Additionally, we discuss the properties of quantum states and operators of interacting fields. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. In this work, we study	Linear energy density and the flux of an electric field in
۷٦.	Dzhunushalie	10.3390/sym130406	cylindrically symmetric	proca tubes
	v, V.	40	solutions within SU(3) non-	Symmetry, Volume 13, Issue 4, April 2021, Номер
	Folomeev		Abelian Proca theory coupled	статьи 640
	and		to a Higgs scalar field. The	
	Tlemisov, A		solutions describe tubes	
			containing either the flux of a	
			color electric field or the	
			energy flux and momentum. It	
			is shown that the existence of	
			such tubes depends crucially	
			on the presence of the Higgs	
			field (there are no such	
			solutions without this field).	
			We examine the dependence of	
			the integral characteristics	
			(linear energy and momentum	
			densities) on the values of the	
			electromagnetic potentials at the center of the tube, as well	
			the center of the tube, as well	

25.	Odsuren, M., Khuukhenkh	DOI 10.1007/s12648-	as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. We investigate the effects of resonant or virtual state and	Analysis of continuum level density for virtual and resonance states
	uu, G., Sarsembayev a, A.T., Amangeldi, N., Katō, K.	020-01994-y	non-resonant contributions in continuum level density. In addition, we discuss the decomposed continuum level density and the M1 transition strength in the scattering problem in terms of the Green function with complex scaling method. © 2021, Indian Association for the Cultivation of Science.	Indian Journal of Physics 2021
26.	Kashaykin P.F., Tomashuk A.L., Vasiliev S.A., Ignatyev A.D., Shaimerdeno v A.A.,	DOI 10.1016/j.nme.2021 .100981	Single-mode optical fibres (SMFs) are required for ITER in-vessel applications as transport fibres to deliver the signal at wavelength λ = 1.55 μm from/to optical fibre sensors. The paper describes the first comparison study of radiation resistance of six puresilica-core SMFs of different	Radiation resistance of single-mode optical fibres with view to in-reactor applications Nuclear materials and energy, V.27, P.100981, 2021.

Ponkratov	manufacturers performed in the	
Y.V.,	process of fission-reactor	
Kulsartov	irradiation in the conditions	
T.V.,	corresponding to the whole	
Kenzhin	ITER lifetime (fast-neutron	
Y.A., Kh.	fluence, flux, γ-dose and dose	
Gizatulin S.,	rate of up to $1.8 \cdot 10^{20}$ n/cm ² ,	
Zholdybayev	$1.08 \cdot 10^{14} \text{n/(cm}^2 \cdot \text{s)}, 2.32 \text{ GGy}$	
T.K.,	and 1.39 kGy/s, respectively,	
Chikhray	temperature of 170–190 °C and	
Y.V.,	vacuum pumping). Polyimide-	
Semjonov	and acrylate-coated SMFs	
S.L.	failed mechanically during the	
	irradiation; therefore, only	
	metal-coated fibres can be	
	considered for the in-vessel	
	applications. Induced optical	
	loss in all three metal-coated	
	SMFs (copper- and aluminum-	
	coated ones) at the fast-neutron	
	fluence of 1·10 ²⁰ n/cm ² was	
	found to lie in the range ~1.5–4	
	dB/m, the lower value of this	
	range allowing the employment	
	of at least 10-m-long transport	
	fibre lengths in the in-vessel	
	applications, assuming the	
	dynamic range of 30 dB. The	
	temperature-dependent	
	microbending optical loss in	
	metal-coated SMFs is	
	discussed, of which the	
	contribution to the total	

		Кафелг	induced loss may be comparable in value to the radiation-induced absorption of light. Neither radiation-induced luminescence, nor Cerenkov emission was detected in the SMFs in the near-infrared range. © 2021 The Author(s) ра теплофизики и технической	физики
27.	Investigation of vapor	DOI: 10.1016/j.apsusc.2019.1448	The vibrational spectra of CCl ₄ in the gas phase and in the	Aldiyarov, A., Nurmukan, A., Sokolov, D., Korshikov, E. Investigation of vapor cryodeposited glasses and glass
	cryodeposite	57	condensed state were measured	transition of tetrachloromethane films // Applied Surface
	d glasses and	Q1 Chemistry: General		Science, 2020, 507, 144857
	glass	Chemistry	The thickness of the condensed	DOI: 10.1016/j.apsusc.2019.144857
	transition of		samples was $d = 2.5 \mu m$. It was	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	tetrachlorome		shown that an increase in the	85077181158&origin=resultslist&featureToggles=FEA
	thane films		temperature of the condensed	TURE_VIEW_PDF:1
			sample leads to a change in the	
			position of the absorption band.	
			Based on the obtained	
			dependence of the position of	
			the absorption band on the	
			temperature of the sample during its heating, an	
			during its heating, an assumption is made that in the	
			temperature range T = 16 K-T =	
			35 K the cryocondensate film is	
			in an amorphous high density	
			state. Experiments were	
			conducted to determine the	
			glass transition temperature (Tg	
			= 79 K) in the sample by	
			observing the half-width of the	

	1			
			characteristic absorption band	
			at a fixed frequency in the	
			vibrational spectra versus	
			temperature.	
28.	The study of	DOI:	The effect of cryogenic	
	thermophysic	10.1016/j.apsusc.2020.1454	treatment on the thermal	The study of thermophysical properties of rubber and
	al properties	87	characteristics emerged from	plastic household waste to determine the temperature
	of rubber and	Q1 Chemistry: General		conditions of cryoprocessing // Applied Surface Science,
	plastic	Chemistry	tires and plastic bottles of	2020, 511, 145487
	household		commercial beverages.	DOI: 10.1016/j.apsusc.2020.145487
	waste to		Automobile tires manufactured	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	determine the		according to the state standard	85079104677&origin=resultslist&featureToggles=FEA
	temperature		"GOST 4754-97" (ISO 1043-	TURE_VIEW_PDF:1
	conditions of		1:2001 "Plastics – Symbols and	
	cryoprocessin		abbreviated terms – Part 1:	
	g		Basic polymers and their	
			special characteristics"; ISO	
			11469:2000 "Plastics – Generic	
			identification and marking of	
			plastics products"; ISO	
			472:1999 "Plastics –	
			Vocabulary") and bottles made	
			of polyethylene terephthalate	
			for food liquids according to the	
			state standard "GOST R 52789-	
			2007"	
			(ECE/TRANS/WP.29/GRB/20	
			19/5 "Proposal for amendments	
			to UN Regulation No. 30")	
			were used as the test samples.	
			Temperature range of	
			investigation was 95–300 K.	
			The thermal conductivity	

	T		T	
			measurements were carried out	
			by a relative stationary heat	
			flow method and the	
			temperature change inside the	
			samples with different forms on	
			heating after cooling to nitrogen	
			temperature. The results	
			obtained are in good agreement	
			with the literature data.	
29.	Refractive	DOI:	We present low-temperature	Aldiyarov, A.U., Sokolov, D.Y., Nurmukan, A.Y.,
	Index at Low	10.1021/acsomega.0c00969	measurements of the refractive	Ramos, M.A. Refractive Index at Low Temperature of
	Temperature	Q1 Chemical Engineering:	index of cryofilms of	Tetrachloromethane and Tetrafluoroethane Cryovacuum
	of	General Chemical	tetrachloromethane and 1,1,1,2-	Condensates // ACS Omega, 2020, 5(20), crp. 11671–
	Tetrachlorom	Engineering	tetrafluoroethane at different	11676
	ethane and		condensation and measurement	DOI: 10.1021/acsomega.0c00969
	Tetrafluoroet		temperatures between 16 and	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	hane		130 K. Using cryovacuum	85085873778&origin=resultslist&featureToggles=FEA
	Cryovacuum		condensation, we have been	TURE VIEW PDF:1
	Condensates		able to obtain thin films in an	
			amorphous state for both	
			substances despite them being	
			very bad glass formers. Then,	
			we have studied the evolution of	
			the refractive index with an	
			increasing temperature,	
			including by transitions to	
			ordered or partially disordered	
			crystalline states. Copyright	
30.	On thermal	DOI: 10.1063/10.0002156	Whereas stable homogenous	Aldiyarov, A., Sokolov, D., Akylbayeva, A., Nurmukan,
	stability of	Q3 Physics and Astronomy	states of aqueous hydrocarbon	A., Tokmoldin, N. On thermal stability of cryovacuum
	cryovacuum		solutions are typically observed	deposited CH4+H2O films // Low Temperature Physics,
	deposited		at high temperatures and	2020, 46(11), ctp. 1121–1124
	acposited		pressures far beyond the critical	DOI: 10.1063/10.0002156
			pressures fur ocyonia the efficat	201. 10.1003/10.0002130

CH4+H2O	values corresponding to	https://www.scopus.com/record/display.uri?eid=2-s2.0-
films	individual components, the	85097577823&origin=resultslist&featureToggles=FEA
	stability of such system may be	TURE_VIEW_PDF:1
	preserved upon transition into	
	the region of metastable states	
	at low temperatures and low	
	pressures. This work is	
	dedicated to the study of the	
	thermal stability of a water-	
	methane mixture formed by	
	cryogenic vapor phase	
	deposition. The obtained thin	
	films were studied using	
	vibrational spectroscopy in the	
	temperature range of 16-180 K.	
	During thermal annealing of the	
	samples, characteristic	
	vibrational C-H modes of	
	methane were monitored	
	alongside the chamber pressure	
	to register both structural	
	changes and desorption of the	
	film material. The obtained	
	results reveal that upon the co-	
	deposition of methane and	
	water, methane molecules	
	appear both in non-bound and	
	trapped states. The observed	
	broadening of the characteristic	
	C-H stretching mode at 3010	
	cm-1 upon an increase in	
	temperature of the sample from	
	16 to 90 K, followed by	

31.	Mathematical modelling of the cryogenic-dynamic start-up process in a pneumatic installation	DOI: 10.1088/1742-6596/1661/1/012092 Q4 Physics and Astronomy: General Physics and Astronomy	the processes of transitional phase processes of cryo-liquids	Yerezhep, D., Aldiyarov, A., Sokolov, D., Nurmukan, A., Krutskikh, B., Amangeldieva, Z. Mathematical modelling of the cryogenic-dynamic start-up process in a pneumatic installation // Journal of Physics: Conference Series, 2020, 1661(1), 012092 DOI: 10.1088/1742-6596/1661/1/012092 https://www.scopus.com/record/display.uri?eid=2-s2.0-85096564770&origin=resultslist&featureToggles=FEATURE_VIEW_PDF:1
22		10.1000/1740	range. The dependences of Von Mises pressure and pressure during cryo-liquid evaporation are shown. These studies are necessary for further detailed study of the kinetic laws of the processes of fast-flow phase transitions of cryo-liquids in a pneumatic installation for the cryogenic-dynamic startup of devices.	
32.	Computer simulation of	DOI: 10.1088/1742-6596/1661/1/012091	The computer simulation model of the expansion of the liquid	

	thammal	O4 Dhysics and Astronomy	nituo con abougo duning a bast	of liquid nitro con in the process of heat lead // Issuers 1 of
	thermal	Q4 Physics and Astronomy:	nitrogen charge during a heat	of liquid nitrogen in the process of heat load // Journal of
	expansion of	_	load was created, and the Mises	Physics: Conference Series, 2020, 1661(1), 012091
	the charge of	Astronomy	stress criterion was considered	DOI: 10.1088/1742-6596/1661/1/012091
	liquid		on the basis of theoretical and	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	nitrogen in		experimental data. The	85096623788&origin=resultslist&featureToggles=FEA
	the process of		influence of the type of using	TURE_VIEW_PDF:1
	heat load		temperature load was studied to	
			generate calculated numerical	
			data for creating fuel on liquid	
			nitrogen. These studies are	
			necessary for the formation of	
			an additional numerical	
			experiment to study the phase	
			transition of liquid nitrogen to a	
			gaseous state under conditions	
			of a closed, and then sharply	
			increasing (exponentially)	
			volume, which is characterized	
			as quasi-isobaric conditions.	
33.	A	DOI:	One of the important aspects for	Yerezhep, D., Tychengulova, A., Sokolov, D., Aldiyarov,
	multifaceted	10.3390/polym13152494	degradation of the life quality is	A. A multifaceted approach for cryogenic waste tire
	approach for	Q2 Chemistry: General	the ever increasing volume and	recycling // Polymers, 2021, 13(15), 2494
	cryogenic	Chemistry	range of industrial wastes.	DOI: 10.3390/polym13152494
	waste tire	•	Polymer wastes, such as	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	recycling		automotive tire rubber, are a	85111943563&origin=resultslist
			source of long-term	
			environmental pollution. This	
			paper presents an approach to	
			simplifying the rubber waste	
			recycling process using	
			cryogenic temperatures. The	
			temperature of cryogenic	
			treatment is ranged from 77 K	
			treatment is ranged from // K	

			to 280 K. Liquid nitrogen was	
			used as a cryoagent for	
			laboratory tests. Experimental	
			and numerical studies have	
			been carried out to determine	
			the optimal conditions for the	
			recycling process. Numerical	
			studies were performed using	
			the COMSOL Multiphysics	
			cross-platform software. The	
			optimal force of mechanical	
			shock for the destruction of a	
			tire which turned into a glassy	
			state after cryoexposure was	
			determined experimentally. The	
			chemical and physical	
			properties of the final product	
			(crumb rubber) have been	
			studied by scanning electron	
			microscopy and energy	
			dispersive X-ray spectroscopy.	
			The analysis shows that the	
			morphology and elemental	
			composition of the samples	
			remain practically unchanged,	
			demonstrating environmental	
			friendliness of the proposed	
			process.	
34.	3-D	DOI:	Using numerical methods, the	Safarik, P., Askarova, A., Bolegenova, S., Maximov, V.,
	modelling of	10.2298/TSCI191107062S	basic characteristics of heat and	Bolegenova, S., Nugymanova, A. The 3-D modelling of
	heat and mass	Q3 Energy: Renewable	mass transfer processes in the	heat and mass transfer during combustion of low-grade
	transfer	Energy, Sustainability and	furnace chamber of the BKZ-75	coal // Thermal Science, 2020, 24, crp. 2823–2832
	during	the Environment	boiler of the Shakhtinskaya TPP	DOI: 10.2298/TSCI191107062S

combustion	(Kazakhstan) were studied	https://www.scopus.com/record/display.uri?eid=2-s2.0-
of low-grade	during a forced partial stop of	85089245543&origin=resultslist&featureToggles=FEA
coal	the supply of coal dust through	TURE_VIEW_PDF:1
	the burners. Two modes of fuel	
	supply were studied; a direct-	
	flow method of supplying air	
	mixtures, when two direct-flow	
	burners are working and two are	
	in emergency mode and vortex	
	method of supplying air	
	mixtures - two vortex burners	
	with a swirl angle of the air	
	mixture flow and their	
	inclination the center of	
	symmetry of the boiler by 30°	
	and two are in emergency	
	mode. The computational	
	experiments allowed to obtain	
	the distributions of the total	
	velocity vector, temperature	
	fields, concentration fields of	
	CO, NO ₂ throughout the entire	
	volume of the combustion	
	chamber and conduct a	
	comparative analysis for the	
	two investigated emergency	
	mode (direct-flow and vortex).	
	Based on the results, it can be	
	concluded that in the case of a	
	forced partial stop of the supply	
	of coal dust, the use of the	
	vortex method of supplying air	
	mixtures improves heat and	
	-	

	1			
			mass transfer processes and	
			allows minimizing emissions of	
			harmful substances.	
35.	Minimization	DOI:	This paper presents new results	Askarova, A., Šafařík, P., Nugymanova, A., Bolegenova,
	of toxic	10.14311/AP.2020.60.0206	of computational experiments	S., Maximov, V., Bolegenova, S., Polytechnica, A.
	emissions	Q2 Engineering: General	on the implementation of	Minimization of toxic emissions during burning low-
	during	Engineering	Overfire Air (OFA)	grade fuel at Kazakhstan thermal power plant // Acta
	burning low-		technologies using an example	Polytechnica, 2020, 60(3), ctp. 206–213
	grade fuel at		of a combustion chamber of the	DOI: 10.14311/AP.2020.60.0206
	Kazakhstan		BKZ-75 boiler of the	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	thermal		Shakhtinskaya power plant	85090715182&origin=resultslist&featureToggles=FEA
	power plant		(Shakhtinsk, Kazakhstan)	TURE_VIEW_PDF:1
			burning high-ash Karaganda	
			coal. The effect of mass air flow	
			through special nozzles located	
			above the burner level on the	
			flow aerodynamics,	
			temperature fields,	
			concentration fields of carbon	
			monoxide CO and nitrogen NO	
			over the entire volume of the	
			combustion chamber was	
			studied. The studied	
			characteristics were compared	
			for various percentages of	
			supplying additional air through	
			OFA injectors: OFA is 0 %	
			(basic version), 10 % and 18 %.	
			It was shown that the	
			installation of OFA injectors	
			leads to a change in the field of	
			the total velocity vector,	
			temperature, and concentrations	

	1			
			of carbon oxides and nitrogen.	
			An increase in the percentage of	
			air supplied through OFA	
			injectors to 18 % leads to a	
			decrease in the concentrations	
			of carbon monoxide CO by	
			about 36 % and nitrogen oxide	
			NO by 25 % compared with the	
			base case. The obtained results	
			will optimize the process of	
			burning pulverized fuel in the	
			combustion chamber of the	
			BKZ-75 boiler, increase the	
			efficiency of fuel burnout,	
			reduce harmful emissions and	
			introduce OFAtechnology at	
			other coal-burning thermal	
			power plants.	
36.	Reduction	DOI:	The basic characteristics of heat	Askarova, A.S., Safarik, P., Bolegenova, S.A., Maksimov
30.	harmful	10.34049/bcc.52.C.0048	and mass transfer processes in	V.Yu., Bolegenova, S.A., Nugymanova, A.O.,
	emissions at	Q4 Chemistry: General	the furnace chamber of the	Manatbayev, R.K., Shortanbayeva, Zh.K. Reduction
	the	Chemistry Chemistry	BKZ-75 boiler of the	
	pulverized	Chemistry	Shakhtinskaya thermal power	harmful emissions at the pulverized fuel combustion in the furnace chamber // Bulgarian Chemical
	fuel		· · · · · · · · · · · · · · · · · · ·	ϵ
	combustion		plant (Kazakhstan) using numerical methods were	Communications, 2020, 52, crp. 26–31 DOI: 10.34049/bcc.52.C.0048
	in the furnace			
	chamber		studied during a forced partial	https://www.scopus.com/record/display.uri?eid=2-s2.0-85101771371&origin=resultslist
	Chamber		stop of the supply of coal dust	83101//13/1&origin=resultsfist
			through burners. Two methods	
			were studied: 1– a direct-flow	
			method of supplying air	
			mixtures: two direct-flow	
			burners are working and two are	
			in emergency mode; 2 – vortex	

method of supplying air mixtures: two vortex burners with a swirl angle of the air mixture flow and their inclination to the center of symmetry of the boiler by 30 degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a forced partial stop of the supply
with a swirl angle of the air mixture flow and their inclination to the center of symmetry of the boiler by 30 degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
mixture flow and their inclination to the center of symmetry of the boiler by 30 degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
inclination to the center of symmetry of the boiler by 30 degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
symmetry of the boiler by 30 degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
degrees and two are in emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
emergency mode. The numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
numerical experiments allowed to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
to obtain the temperature fields and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
and concentration of carbon monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
monoxides CO, nitrogen dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
dioxide NO2 throughout the entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
entire volume of the combustion chamber and conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
conduct a comparative analysis for the two investigated emergency mode. It can be concluded that in the case of a
for the two investigated emergency mode. It can be concluded that in the case of a
for the two investigated emergency mode. It can be concluded that in the case of a
emergency mode. It can be concluded that in the case of a
concluded that in the case of a
forced partial stop of the supply
of coal dust, the use of the
vortex method of supplying air
mixtures improves heat and
mass transfer processes and
allows minimizing emissions of
harmful substances.
37. Computer DOI: 10.3390/en14051236 Using numerical methods, Askarova, A., Bolegenova, S., Maximov, V.,
technologies Q3 Energy: Fuel studies have been carried out to Bolegenova, S., Askarov, N., Nugymanova, A. Computer
of 3d Technology determine the effect of the technologies of 3d modeling by combustion processes to
modeling by introduction of the technology create effective methods of burning solid fuel and reduce
combustion of two-stage combustion of harmful dust and gas emissions into the atmosphere //
,
processes to high-ash Karaganda coal on the Energies, 2021, 14(5), 1236

effective mass transfer processes in the https://www.scopus.com/record/display.uri?eid=2-s2.0-85106281778&origin=resultslist&featureToggles=FEA methods of furnace of the BKZ-75 boiler at Shakhtinskaya TPP TURE VIEW PDF:1 burning solid (Kazakhstan). Various regimes fuel and reduce of supplying additional air into harmful dust the combustion space, the volume of which varied from and gas emissions 0% (traditional basic version) to 30% of the total volume of air the into required for fuel combustion, atmosphere have been investigated using 3D computer modeling methods. The performed computational experiments made it possible to obtain the distributions of the total velocity vector, temperature fields, concentration fields of carbon monoxide CO and nitrogen dioxide NO2 over the entire volume of the furnace and at the outlet from it. The introduction of the two-stage combustion technology made it possible to optimize the combustion of high-ash coal, since in this case there is an increase in the temperature in the torch core and a decrease in it at the outlet from the furnace, which has a significant effect on the chemical processes of the formation of combustion

	1			
			products. Based on the results	
			obtained, it can be concluded	
			that an increase in the	
			percentage of air supplied	
			through additional injectors to	
			18% leads to a decrease in the	
			concentrations of carbon	
			monoxide CO by about 36%,	
			and nitrogen dioxide NO ₂ by	
			25% compared to the base case.	
			A further increase in the volume	
			of additional air leads to a	
			deterioration in these indicators.	
			The results obtained will make	
			it possible to optimize the	
			combustion of low-grade fuel in	
			the furnace of the BKZ-75	
			boiler, increase the efficiency of	
			fuel burnout, reduce harmful	
			emissions into the atmosphere,	
			and introduce a two-stage	
			combustion technology at other	
			coal-fired TPPs.	
38.	3D	DOI:	The paper describes a study of	Messerle, V.E., Askarova, A.S., Bolegenova, S.A.,
	simulation of	10.1134/S08698643210201	the influence of Overfire Air	Maximov, V.Y., Bolegenova, S.A., Nugymanova, A.O.
	heat and mass	04	(OFA) technology on heat and	3D simulation of heat and mass transfer for testing of
	transfer for	Q3 Energy Engineering and	mass transfer parameters for a	"clean energy" production technologies // Thermophysics
	testing of	Power Technology	furnace chamber in the BKZ-75	and Aeromechanics, 2021, 28(2), ctp. 271–280
	"clean	-	boiler at the Shakhtinsk power	DOI: 10.1134/S0869864321020104
	energy"		plant (Kazakhstan); this plant is	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	production		fueled with Karaganda high-ash	85110543899&origin=resultslist&featureToggles=FEA
	technologies		coal. The computer simulation	TURE_VIEW_PDF:1
			methods were applied for	

			studying different air supply	
			regimes through the air	
			injectors operating in OFA	
			design with different	
			contributions: 0 (reference	
			variant), 5, 10, 15, 18, and 20 %.	
			The computer simulation of in	
			furnace processes offers the	
			distribution for total velocity	
			vector, tempertaure field, NO ₂	
			concentration field for the entire	
			furnace and the exit zone. The	
			study demonstrated that the	
			operation with air injection at	
			18 % of OFA is optimal for	
			combustion of high-ash coal.	
			This operation mode offers a	
			higher tempertaure at the flame	
			core and a gradual tempertaure	
			reduction at the chamber outlet;	
			the latter feature is significant	
			for chemistry of combustion	
			products. The boiler under this	
			operation mode offers a	
			reduction of nitrogen oxide NO ₂	
			emissions from the furnace.	
39.	Using Plasma	DOI:	The possibility of introducing	Askarova, A., Safarik, P., Bolegenova, S., Nugymanova,
	Activation to	10.1002/ceat.202100169	plasma ignition of fuel in	A., Maximov, V., Askarov, N., Bolegenova, S. Using
	Optimize the	Q3 Chemical Engineering:	combustion chambers of power	Plasma Activation to Optimize the Combustion Process
	Combustion	General Chemical	boilers was investigated by	and Minimize Harmful Emissions // Chemical
	Process and	Engineering	using 3D computer modeling	Engineering and Technology, 2021, 44(11), ctp. 1970-
	Minimize	_	methods. Computational	1977
			experiments were carried out on	DOI: 10.1002/ceat.202100169

	Harmful		operating boilers, and a	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	Emissions		comparison of the	85116292780&origin=resultslist
			characteristics of the	
			combustion process for	
			traditional fuel combustion and	
			its thermochemical variant was	
			carried out. Plasma technology	
			allows the concentration of	
			carbon and nitrogen oxides at	
			the outlet of the furnace to be	
			reduced. The results obtained	
			showed the efficiency of	
			thermochemical plasma	
			activation of fuel and the	
			possibility of its application in	
			real heat and power facilities to	
			optimize combustion processes	
			and minimize harmful	
			emissions.	
40.	Gasification	DOI: 10.31025/2611-	This paper presents the	
	of biomass in	4135/2020.13989	thermodynamic analysis and	Slavinskaya, N., Sitdikov, Z. Gasification of biomass in a
	a plasma	Q4 Environmental Science:	experimental results on the	plasma gasifier // Detritus, 2020, 12, crp. 62–72
	gasifier	Environmental Engineering	plasma gasification of biomass	DOI: 10.31025/2611-4135/2020.13989
			using the example of wood	https://www.scopus.com/record/display.uri?eid=2-s2.0-
			waste. Thermodynamic	85092505027&origin=resultslist&featureToggles=FEA
			computations revealed that	TURE_VIEW_PDF:1
			synthesis gas can be produced from wood waste for utilization	
			in the heat-and-power engineering, metallurgy and	
			chemical industries. The air	
			gasification of wood waste	
			produces a synthesis gas yield	
			produces a synthesis gas yield	

			of 71.6% (CO-41.9% and H ₂ -	
			29.7%). Experiments on the	
			plasma gasification of wood	
			waste were conducted in an	
			experimental setup composed	
			of a plasma gasifier with 50	
			kg/h nominal productivity and a	
			DC plasmatron with 70 kW	
			nominal power. Based on gas	
			analysis, the exit gas of the	
			plasma setup exhibited the	
			following composition, vol.%:	
			CO-42.0, H_2 -25.1, and N_2 -32.9.	
			The measured temperature in	
			the bottom of the plasma	
			gasifier was 1,560 K. The	
			discrepancy between the	
			experimental and calculated	
			yield of synthesis gas was not	
			more than 7%. Harmful	
			impurities were not observed in	
			the gases or the condensed	
			products generated from the	
			plasma gasification of wood	
			waste.	
41.	Application	DOI:	The results from numerical and	Messerle, V.E., Paskalov, G., Umbetkaliyev, K.A.,
	of Organic	10.1134/S00406015200200	experimental investigations into	Ustimenko, A.B. Application of Organic Fuel Additives
	Fuel	44	the influence of organic fuel	to Enhance Coal Combustion Efficiency // Thermal
	Additives to	Q3 Energy: Energy	additives (OFAs) on the	Engineering, 2020, 67(2), ctp. 115–121
	Enhance Coal	Engineering and Power	efficiency of combusting high-	DOI: 10.1134/S0040601520020044
	Combustion	Technology	ash Ekibastuz coal are	https://www.scopus.com/sourceid/22092?origin=resultsl
1	Combustion	1 cerniolog y	asii Ekibastaz coai arc	inteps.//www.scopus.com/sourceid/22072.origin—resultsi
	Efficiency	recimology	presented. Technology and a	ist

equipped with a plasmaassisted startup system are proposed. The thermodynamic and kinetic parameters of cocombustion of coal with OFA are numerically analyzed, as a result of which the optimum process temperatures, air-tocoal mass consumption ratios, combustion chamber and geometrical parameters have been selected. Thermodynamic analyses of the coal combustion process have shown that 7 kg of air is required to burn 1 kg of coal. A tendency toward increasing the concentrations of CO₂ and H₂O and, accordingly, toward decreasing concentrations of NO, CO, and O₂ in the coal combustion products in using OFA has been revealed. The kinetic analysis results have shown that the coal combustion process with a consumption rate of 10 kg/h is fully completed in a combustion chamber 0.2 m in diameter and 0.9 m in height. A series of experiments on cocombustion of Ekibastuz coal with OFA carried out. The was investigation results made it

			,	
			possible to evaluate the	
			effectiveness of Omstar-DX1	
			and Open Flame OFAs, which	
			are prepared as mixtures of light	
			ethers. Comparative	
			experiments of coal combustion	
			with and without OFAs in	
			different concentrations (0–5	
			cm ³ per kg of coal) have shown	
			that the OFAs increase the	
			flame temperature in the	
			combustion chamber's initial	
			part and decrease this	
			temperature at the chamber's	
			outlet. This means that the air—	
			coal mixture takes less time to	
			ignite and, accordingly, it burns	
			out more rapidly. The	
			introduction of OFAs results in	
			a noticeably more efficient	
			combustion of low-grade coal,	
			in smaller emissions of CO and	
			NO, and in an increased	
			concentration of CO ₂ , which	
			points to the more complete	
			combustion of fuel.	
42.	Modeling of	DOI:	Results of numerical	Messerle, V.E., Ustimenko, A.B. Modeling of Coal
	Coal Ignition	10.1109/TPS.2019.2956847	experiments on ignition of	Ignition in Plasma-Fuel Systems with an Electric Arc
	in Plasma-	Q3 Physics and Astronomy:	pulverized coal in a plasma-fuel	Torch // IEEE Transactions on Plasma Science, 2020,
	Fuel Systems	Nuclear and High Energy	system (PFS) are presented.	48(2), стр. 343–349, 8937498
	with an	Physics	PFS is designed for fuel oil-free	DOI: 10.1109/TPS.2019.2956847
	Electric Arc		startup of the boilers and	
	Torch		stabilization of pulverized coal	

flame represents and pulverized coal burner equipped with plasma torch. The calculations were carried out using the PlasmaKinTherm program. It combines kinetic and thermodynamic methods for calculating the processes of motion, heating, thermochemical transformations, and ignition of the fuel mixture in the volume of the PFS. The ignition conditions of the fuel mixture had previously been determined for two operating parameters of the PFS: the electric power of the plasma torch and the ash content of coal. Also, one of the main regime parameters of the PFS providing ignition of the fuel is the concentration of coal dust in the fuel mixture. It can vary within a wide range. Therefore, conditions for fuel mixture ignition in the PFS have been investigated, depending on the concentration of coal in the fuel mixture in the range from 0.4 to 1.8 kg of coal per 1 kg of air. Calculations were performed for cylindrical PFS of 0.2 m diameter and 3 m

https://www.scopus.com/record/display.uri?eid=2-s2.0-85081063122&origin=resultslist&featureToggles=FEATURE VIEW PDF:1

43.	Recycling of Organic Waste in a Plasma Reactor	02199-0	of length at fixed consumption of coal (1000 kg/h), the plasma torch power (60 kW), and three values of coal ash content (20%, 40%, and 70%). Nontrivial regularities of the process of plasma thermochemical preparation of fuel for burning were revealed. Thermodynamic calculations and experiments on plasma gasification of wood waste have been conducted. On the basis of a verified TERRA universal thermodynamic-calculation program, the authors have conducted an experiment on plasma recycling of agricultural waste. No detrimental impurities were found in the products of plasma recycling.	Messerle, V.E., Mossé, A.L., Ustimenko, A.B., Slavinskaya, N.A., Sitdikov, Z.Z. Recycling of Organic Waste in a Plasma Reactor // Journal of Engineering Physics and Thermophysics, 2020, 93(4), crp. 987–997 DOI: 10.1007/s10891-020-02199-0 https://www.scopus.com/record/display.uri?eid=2-s2.0-85089870087&origin=resultslist&featureToggles=FEA TURE VIEW PDF:1
44.	Plasma-fuel systems for clean coal technologies	DOI: 10.1680/jener.19.00053 Q3 Energy: General Energy	This paper presents plasma technology for pulverised-coal ignition and improving energy efficiency of power stations. Plasma-fuel systems (PFS) were developed to accomplish this technology. PFS are a combination of pulverised-coal burners with arc plasmatrons. The main idea of the technology using PFS is to replace the traditionally used fuel oil for	Messerle, V., Ustimenko, A., Lavrichshev, O. Plasmafuel systems for clean coal technologies // Proceedings of Institution of Civil Engineers: Energy, 2021, 174(2), crp. 79–83 DOI: 10.1680/jener.19.00053 https://www.scopus.com/record/display.uri?eid=2-s2.0-85106663564&origin=resultslist&featureToggles=FEATURE_VIEW_PDF:1

flame stabilisation and starting coal-fired boilers with the products of plasma chemically treated pulverised-coal. The coal-Air mixture is fed into the PFS where the plasmatron induces heating, devolatilisation and gasification of the coal particles and partial oxidation of the char carbon. As a result, a highly reactive twocomponent fuel (mixture of combustible gases and partially oxidised char particles) is formed at the exit of the PFS. At the entry to the furnace, this highly reactive two-component fuel is easily ignited. PFS increase the efficiency of coal ignition and combustion. eliminate fuel oil expenditure for boiler start-up and flame stabilisation and decrease unburned carbon, nitrogen oxides (NOx), sulfur oxides (SOx) and vanadium (V) oxide emissions. PFS have been tested at 30 coal-fired power stations and steam coals of all ranks were used. The volatile content of steam coals varied from 4 to 50%; ash from 15 to

45. Changing Diffusion—Convection Modes in Termary Mixtures with a Diluent Gas Billuent Gas DOI:10.1134/S0040579520 O20086 Q3 Chemical Engineering: General Chemical Engineering Highlight of the diffusion of helium and nitrous oxide diluted by propane to the same extent are experimentally studied at different pressures and concentrations of the diluent gas in the mixture. It is found that, at a certain pressure, convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the components of the components of the concentrations of the components of the concentrations of the concentrations of the components of the concentrations of the concentrations of the components of the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the components of the mixture lang the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				56%; and heat of combustion	
45. Changing Diffusion—Convection Modes in Ternary Mixtures with a Diluent Gas Mixture with a Diluent Gas Mixture with a Diluent Gas Modes in Ternary Mixtures with a Diluent Gas Modes in Ternary Hixtures with a Diluent Gas Modes in Ternary Engineering Mixtures with a Diluent Gas Modes in Ternary Hixtures with a Diluent Gas Modes in Ternary Hixture experimentally studied at different pressures and concentrations of the diluent gas in the mixture. It is found that, at a certain pressure convection modes transfer, which uncommon for diffusion. An increase in the mixture, an increase in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions of the concentrations of the concentrations of the concentrations of the concentrations of the deliuent gas in the mixture. It is found that a certain pressure and concentration of the diluent gas in the mixture. It is found that a certain pressure intensifies the mixture. An increase in the solvent pressure in the si				·	
Diffusion—Convection Modes in Ternary Mixtures with a Diluent Gas Dil	15	Changing	DOI:10.1124/\$0040570520	ŭ	Vocay V.N. Fodoronko O.V. Asambassa M.V.
Convection Modes in Ternary Mixtures with a Diluent Gas // Ternary Mixtures with a Diluent Gas /	45.	0 0			
Modes in Ternary Mixtures with a Diluent Gas Tenary Mixtures with a Diluent Gas Theoretical Foundations of Chemical Engineering, 2020, 2					
Ternary Mixtures with a Diluent Gas Engineering 54(2), crp. 289–296 DOI:10.1134/S0040579520020086 https://www.scopus.com/record/display.uri?eid=2-s2.0-85084427996&orgin=resultslist&featureToggles=FEATURE VIEW PDF:1 TURE VIEW PDF:1 TURE VIEW PDF:1 Engineering 54(2), crp. 289–296 DOI:10.1134/S0040579520020086 https://www.scopus.com/record/display.uri?eid=2-s2.0-85084427996&orgin=resultslist&featureToggles=FEATURE VIEW PDF:1 TURE VIEW PDF:1 Engineering 54(2), crp. 289–296 DOI:10.1134/S0040579520020086 https://www.scopus.com/record/display.uri?eid=2-s2.0-85084427996&orgin=resultslist&featureToggles=FEATURE VIEW PDF:1 TURE VIEW PDF:1 Engineering 54(2), crp. 289–296 DOI:10.1134/S0040579520020086 https://www.scopus.com/record/display.uri?eid=2-s2.0-85084427996&orgin=resultslist&featureToggles=FEATURE VIEW PDF:1 Engineering 54(2), crp. 289–296 DOI:10.1134/S0040579520020086 https://www.scopus.com/record/display.uri?eid=2-s2.0-85084427996&orgin=resultslist&featureToggles=FEATURE VIEW PDF:1 Engineering 54(2), crp. 289–296 Engineering 54(2]	1
Mixtures with a Diluent Gas different pressures and concentrations of the diluent gas in the mixture. It is found that, at a certain pressure, convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				* *	
a Diluent Gas concentrations of the diluent gas in the mixture. It is found that, at a certain pressure, convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the			Engineering		
gas in the mixture. It is found that, at a certain pressure, convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				1	
that, at a certain pressure, convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the		a Diluent Gas			* *
convection currents appear in the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				©	
the system which intensify the partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				· ·	TURE_VIEW_PDF:1
partial mass transfer, which uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				1	
uncommon for diffusion. An increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				1	
increase in pressure intensifies the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				*	
the mixing of the components of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the					
of the mixture. An increase in the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				increase in pressure intensifies	
the concentration of the diluent gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				the mixing of the components	
gas in the mixture leads to the stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				of the mixture. An increase in	
stabilization of convection modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				the concentration of the diluent	
modes. Solving diffusion equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				gas in the mixture leads to the	
equations shows that, in systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				stabilization of convection	
systems with a ballast gas, conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				modes. Solving diffusion	
conditions for the nonlinear distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				equations shows that, in	
distribution of the concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				systems with a ballast gas,	
concentrations of the components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				conditions for the nonlinear	
components of the mixture along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				distribution of the	
along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				concentrations of the	
along the length of the channel are implemented which can lead to the appearance of an extremum of the density of the				components of the mixture	
are implemented which can lead to the appearance of an extremum of the density of the				l *	
to the appearance of an extremum of the density of the				0	
extremum of the density of the				<u>*</u>	
I IIIXture (i.e., inversion of the				mixture (i.e., inversion of the	

			density gradient of the mixture),	
			which induces the appearance	
			of convection currents. The	
			stability of the mechanical	
			equilibrium of the ternary	
			mixture in a vertical cylindrical	
			channel under the action of	
			gravity and at the predefined	
			concentration gradients of the	
			components is numerically	
			studied. The boundary of the	
			diffusion–convection kinetic	
			transition is determined. The	
			experimental and numerical	
			results are compared in the	
			coordinates of the Rayleigh	
			number and pressure.	
46.	Features of	DOI: 10.1088/1742-	Diffusion mixing in mixtures of	Moldabekova, M.S., Asembaeva, M.K., Krasikov, S.A.,
	diffusion and	6596/1565/1/012063	$C_3H_8 + CO_2-N_2O$, Ne + C_3H_8 -	Nurtay, G.F. Features of diffusion and convective mixing
	convective	Q4 Physics and Astronomy:	$N_2O + C_3H_8$, $N_2O + He-C_3H_8 +$	in mixtures containing hydrocarbons // Journal of
	mixing in	General Physics and	CH ₄ at different pressures has	Physics: Conference Series, 2020, 1565(1), 012063
	mixtures	Astronomy	been studied experimentally. It	DOI: 10.1088/1742-6596/1565/1/012063
	containing		has been found that at a certain	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	hydrocarbons		pressure in the mixture there are	85090230126&origin=resultslist&featureToggles=FEA
			convective flows distorting the	TURE_VIEW_PDF:1
			expected diffusion transfer. The	
			transition parameters from	
			diffusion to convective mixing	
			type can be determined in terms	
			of stability theory. The	
			numerical results are compared	
			with experimental data.	

47.	Intensificatio	DOI:	The possibility of intensifying	Kossov, V., Fedorenko, O., Asembaeva, M.,
	n of the	10.1002/ceat.202100241	the separation of isothermal	Mukamedenkyzy, V., Moldabekova, M. Intensification
	Separation of	Q3 Chemical Engineering:	ternary gas mixtures containing	of the Separation of Isothermal Ternary Gas Mixtures
	Isothermal	General Chemical	carbon dioxide was studied	Containing Carbon Dioxide // Chemical Engineering and
	Ternary Gas	Engineering	experimentally. It was shown	Technology, 2021, 44(11), crp. 2034–2040
	Mixtures		that the preferential transfer of	DOI: 10.1002/ceat.202100241
	Containing		carbon dioxide requires the	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	Carbon		system to be initially diffusively	85115374585&origin=resultslist&featureToggles=FEA
	Dioxide		unstable, and the interdiffusion	TURE_VIEW_PDF:1
			coefficients of mixing	
			components can either differ	
			significantly from each other or	
			be close in value. A linear	
			analysis of the stability of	
			isothermal ternary gas mixtures	
			containing carbon dioxide for a	
			flat vertical channel and a	
			cylindrical channel of finite	
			height was performed.	
			Comparison of the results of the	
			numerical study with	
			experimental data showed	
10	0 1 0	0.0 71	qualitative coherency.	
48.	Study of	Q3 Physics and Astronomy:	The article proposes a new	Kaliyev, Y.B., Baizhumanov, K.D., Tursymbekova, Z.Z.,
	stress-strain	Condensed Matter Physics	design of a continuous mill. To	Zhumanov M.A., Smailova G.A., Azilkiyasheva, M.M.,
	state billets		study the stress-strain state	Zhauyt, A. Study of stress-strain state billets when rolling
	when rolling		during rolling of thin slabs on	in a continuous mill of hot-rolled thin stripes using msc
	in a		the proposed mill, a three-	super forge // Metalurgija, 2021, 60(1-2), ctp. 159–161
	continuous		dimensional geometric and	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	mill of hot- rolled thin		simulation model of the rolling	85096193410&origin=resultslist&featureToggles=FEA
			process was developed using MSC SUPER FORGE. Based	TURE_VIEW_PDF:1
	stripes using			
			on the obtained results of	

	m aa ayraa		numerical modeling, the	i
	msc super		\mathcal{S}'	
	forge		distributions of equivalent	
			strains in a thin slab when	
			rolling in 1 mill stand, the	
			distribution of equivalent	
			stresses in a thin slab when	
			rolling in 1 mill stand, the	
			distribution of the temperature	
			field in a thin slab when rolling	
			in 1 mill stand.	
49.	Numerical	DOI:	During the last decade, there	Manatbayev, R., Baizhuma, Z., Bolegenova, S.,
	simulations	10.1016/j.renene.2021.02.0	was an increased interest in	Georgiev, A. Numerical simulations on static Vertical
	on static	23	wind turbine icing. Most of the	Axis Wind Turbine blade icing // Renewable Energy,
	Vertical Axis	Q1 Energy: Renewable	icing studies are related to	2021, 170, стр. 997–1007
	Wind Turbine	Energy, Sustainability and	horizontal axis wind turbine	DOI: 10.1016/j.renene.2021.02.023
	blade icing	the Environment	icing (HAWT). Vertical axis	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	_		wind turbine (VAWT) icing is	85100894785&origin=resultslist&featureToggles=FEA
			seldomly reported in the	TURE_VIEW_PDF:1
			literature. Compared to the	
			HAWT blade VAWT blade	
			operates under various angles of	
			attack. Therefore, ice accretion	
			shapes on static VAWT blade	
			must be considered under	
			different angles of attack. In the	
			present study, a novel approach	
			to predict ice accretion shapes	
			on VAWT is described. Ice	
			accretion shapes are obtained at	
			a range of angles of attack	
			between -25° and 25° using	
			FENSAP-ICE which is the	
			state-of-art icing simulation	
			state of are reing simulation	

			T	,
			tool. Moving reference frame	
			(MRF) was used to consider	
			rotating effect on droplet field.	
			The present method helped to	
			draw the following conclusions.	
			Firstly, the whole leading edge	
			is covered by ice. Secondly, in	
			rime ice conditions smooth ice	
			shape is obtained, which does	
			not significantly affect	
			aerodynamic performance.	
			Whereas in glaze ice conditions	
			bumpy ice shapes causing	
			massive flow separation and lift	
			force degradation. Finally, iced	
			VAWT loses up to 60% of	
			power performance due to rime	
			ice conditions. In glaze ice	
			conditions VAWT is unable to	
			produce power.	
50.	Numerical	DOI:	This paper proposes a	Baizhuma, Z., Kim, T., Son, C. Numerical method to
	method to	10.1016/j.jweia.2021.10470	numerical method to predict the	predict ice accretion shapes and performance penalties
	predict ice	8	ice accretion shapes and	for rotating vertical axis wind turbines under icing
	accretion	Q1 Energy: Renewable	aerodynamic performance of	conditions // Journal of Wind Engineering and Industrial
	shapes and	Energy, Sustainability and	rotating vertical axis wind	Aerodynamics, 2021, 216, 104708
	performance	the Environment	turbine (VAWTs) under icing	DOI: 10.1016/j.jweia.2021.104708
	penalties for		conditions. A multiple	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	rotating		reference frame (MRF) and	85111317123&origin=resultslist&featureToggles=FEA
	vertical axis		sliding mesh technique (SMT)	TURE_VIEW_PDF:1
	wind turbines		are combined to efficiently	
	under icing		reflect the unsteady icing	
	conditions		effects on rotating wind	
			turbines. The SMT calculates	

the flow field considering the rotational and unsteady effects of the VAWTs. The MRF can efficiently clarify the rotational effects of the droplet field and ice accretion. Using the MRF technique, a series of icing simulations is implemented in which the ice shapes are updated at azimuth angle intervals of 36°. Using the proposed method, ice shapes in agreement with those obtained in icing wind tunnel tests can be obtained. Moreover, ice that is evenly distributed over the blade surface under glaze ice conditions can be examined instead of only the forms concentrated on the leadingedge, such as ice horns. The overall output power of an icecovered VAWT is noted to be significantly reduced. Massive flow separation is induced owing to the increased airfoil thickness at azimuthal angles between 0° and 180°. Nevertheless, the performance of the thickened airfoil is enhanced owing to the delayed flow separation via dynamic

						T.
		stall in azimuthal angles				
		between 180° and 270°.				
	Abdikarimov, M., Turgumbayeva, R., Sagintay	In Western Kazakhstan, there	General	Q4 Engineering:	Investigation	51.
ion Oil	Bekalay, N., Adilbekov, A. Investigation	are huge reserves of oil Sands,		Engineering	Oil	
/ Journal	Bituminous Sands - Raw Materials for Energy //	containing in its composition			Bituminous	
w, 2020,	of Engineering Science and Technology Review	natural bitumen, which can be			Sands - Raw	
	(Special Issue), crp. 196–199	used in various sectors of the			Materials for	
-2-s2.0-	https://www.scopus.com/record/display.uri?eid=2	economy. The widespread use			Energy	
s=FEA	85114126507&origin=resultslist&featureToggles	of bitumen is due to their high				
	TURE VIEW PDF:1	technological, operational and				
		economic performance. The				
		composite materials were				
		obtained by the reaction of				
		lithification with modifying				
		additives of oil-bitumen rocks				
		with inorganic minerals at room				
		temperature. IR-spectroscopy				
		oil-bitumene rocks were				
		carried. The separation of the				
		organic part of the oil-bearing				
		mine from the Munaily-Mola				
		_				
		1 *				
		extraction method with the				
		Soxlet apparatus. As a solvent,				
		a mixture of 1: 4 alcohol-				
		benzene is used. Three-and-				
		four-layer filter cylinder				
		cartridge (intravascular tube)				
		,				
		1 1				
		neck diameter of the extraction				
		nozzle. The tube was dried in a				
		composite materials were obtained by the reaction of lithification with modifying additives of oil-bitumen rocks with inorganic minerals at room temperature. IR-spectroscopy oil-bitumene rocks were carried. The separation of the organic part of the oil-bearing mine from the Munaily-Mola deposit of West Kazakhstan was carried out by the extraction method with the Soxlet apparatus. As a solvent, a mixture of 1: 4 alcoholbenzene is used. Three-and-four-layer filter cylinder cartridge (intravascular tube) was prepared from the filter paper without diameter of the neck diameter of the extraction				

	1			
			drying oven, and on the one	
			hand it was wrapped in cotton,	
			and measured. The tube is filled	
			with fiber, cotton pellets, and	
			again measured, the difference	
			in mass is 0.01 g. The volume of	
			oil-bitumene rocks No. 4 in the	
			organic part is 12,66%, and the	
			mineral part is 87,34%. At the	
			same time, in oil-bitumene	
			rocks No. 5, the share of	
			government securities in the GS	
			- 12.47%, mineral part -	
			87.53%.	
52	T	DOI: 10.22014/2020.2519		Dulance A.Z. Dandan VV. Dalahan D.Z.
52.	Intensificatio	DOI: 10.32014/2020.2518-		Bukayeva, A.Z., Povetkin, V.V., Bektibay, B.Z.,
	n of		problem of increasing the	Nurymov, Y.K., Yermekov, D.K. Intensification of
	combustion	Earth and Planetary	power of the air-petrol thermal	combustion fuel mixture in petrolair thermal tools with
	fuel mixture	Sciences: Geotechnical	tools for destruction of rocks in	ejector nozzle // News of the National Academy of
	in petrolair		the extraction and processing	Sciences of the Republic of Kazakhstan, Series of
	thermal tools	Engineering Geology	(stabilizing) block of stone, due	Geology and Technical Sciences, 2020, 3(441), ctp. 40–
	with ejector		to the intensification of	47
	nozzle		combustion of the fuel mixture	DOI: 10.32014/2020.2518-170X.52
			in a supersonic high-	https://www.scopus.com/record/display.uri?eid=2-s2.0-
			temperature jet torch burner.	85090707658&origin=resultslist&featureToggles=FEA
			The model of shock wave	TURE_VIEW_PDF:1
			excitation process in ejector	
			nozzle, described by the	
			equations of preservation of	
			mechanics of continuous	
			environments is given. As a	
			result, the solution to this	
			equation found the main	
			operating and design	
			operating and design	

kperimental
owing from
Engineering
. 172–177
id=2-s2.0-
gles=FEA
la, Zh.K.,
tion of the
the flat jet
rnal, 2020,
, ,
id=2-s2.0-
gles=FEA

55.	Application	Q4 Engineering: Industrial	patterns of development of a flat free jet. A flow diagram of the jet between the end surfaces has been constructed. The resistance calculation for the laminar boundary layer has been carried out. The formula for calculation of the change in the maximum jet velocity in a first approximation has been derived. The comparison of the theoretical calculations with the experimental data has shown a good agreement. Excessive use of fossil fuel	Kalassov, N., Dzhonova, D., Tsibranska, I., Panyovska,
33.	of integrated	and Manufacturing	results in a rapid depletion of	S., Manatbayev, R. Application of integrated membrane
	membrane	Engineering	non-renewable fossil energy	bioreactors in renewable energy industry // Journal of
	bioreactors in		resources, a rise in fuel cost and	Chemical Technology and Metallurgy, 2020, 55(2), ctp.
	renewable		an uncontrolled emission of	314–323
	energy		greenhouse gases, which causes	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	industry		a severe threat to the	85101849917&origin=resultslist&featureToggles=FEA
			environment. This critical state	TURE VIEW PDF:1
			has turned the awareness to	
			explore renewable energy	
			resources, which include water,	
			biomass, wind and geothermal heat. Among these possibilities,	
			biomass based fuels, i.e.	
			biofuels, have been proposed as	
			a substitute for conventional	
			diesel and gasoline. The	
			biofuels burn cleanly, thereby	
			reducing harmful emissions,	

especially in the form of carbon monoxide, unburned hydrocarbon and toxic chemicals. This work aims at revealing the current state-ofthe-art and the challenges in the application of integrated membrane bioreactors (MBRs) in biofuel production. This innovative technology employed for production of biofuels in gaseous and liquid state, such as biohydrogen, bio crude oil, bioethanol and biodiesel. Great opportunities for producing combustible gas mixtures open up broad for integrated prospects systems, and the low energy intensity makes them attractive for industrial developments. Coupling of bio processes and membrane filtration allows to solve the problem of producing methane and hydrogen without emission of carbon dioxide into the atmosphere. The main advantage of a MBR system is that it can be applied using environmentally friendly technology, i.e. biotechnology based on natural processes and mechanisms of conversion of

	1			7
			substances by enzymes and	
			microbial cultures. The waste	
			and by-products of these	
			processes can also serve as	
			additional sources of raw	
			materials, which leads to	
			completely waste-free	
			production.	
56.	Numerical	DOI:	This work describes the	Manatbayev, R.K., Kalassov, N.B., Amankeldi, L.B.
	investigation	10.31489/2021NO2/56-59	appearance of a concentration	Numerical investigation of the occurrence of a
	of the	Q4 Engineering: General	polarizing boundary layer on	concentration-polarization layer // Eurasian Physical
	occurrence of	Engineering	the membrane surface during	Technical Journal, 2021, 18(2), crp. 56–59
	a	2 2	the separation of the H2/CO2	DOI: 10.31489/2021NO2/56-59
	concentration		gas mixture. Concentration	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	-polarization		polarization occurs when the	85111095017&origin=resultslist&featureToggles=FEA
	layer		rejection solution accumulates	TURE VIEW PDF:1
			near the surface of the	
			membrane, forming a boundary	
			layer. The inclusion of	
			concentration polarization	
			effects in the processing of	
			porous walls creates additional	
			difficulties. The boundary layer	
			formed by concentration	
			polarization can be considered	
			as a type of a second porous	
			wall with a lower permeability	
			than the membrane. The main	
			difficulty in modeling this	
			situation is to determine the	
			appropriate boundary	
			conditions for the concentration	
			on the wall, since the	
			on the wan, since the	

	T			7
			concentrations on the wall will	
			constantly change, and the wall	
			geometry itself may change	
			over time due to particle	
			deposition. To account for this	
			effect, a numerical approach	
			was developed, which is	
			discussed in this work.	
57.	Development	DOI: 10.15587/1729-	Every year, the world economy	Yermekov, D., Povetkin, V., Rutkuniene, Z.,
	of a	4061.2021.235578	suffers enormous losses due to	Nurmukhanova, A., Bukayeva, A. Development of a
	Technology	Q3 Engineering: Industrial	wear and corrosion of machine	Technology of Gasflame Application of Powders to
	of Gasflame	and Manufacturing	parts and equipment. With	Increase Wear Resistance and Adhesion Strength //
	Application	Engineering	targeted preventive protection	Eastern-European Journal of Enterprise Technologies,
	of Powders to		against wear and tear, these	2021, 3, стр. 14–24
	Increase		losses can be avoided. Along	DOI: 10.15587/1729-4061.2021.235578
	Wear		with the coating of new parts,	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	Resistance		this includes the restoration of	85109461965&origin=resultslist&featureToggles=FEA
	and Adhesion		worn parts. An effective	TURE VIEW PDF:1
	Strength		method is the surfacing of	
			materials with high	
			performance properties. The	
			quality of hardened parts	
			depends on the properties of	
			deposited material, so	
			hardening material or alloy is	
			selected taking into account the	
			working environment of the	
			part and the coating method.	
			Today there are many self-	
			fluxing surfacing powder alloys	
			based on nickel, copper and	
			methods. The paper discusses	
			others, obtained by different	

the process of studying the gasflame application of powders to increase wear resistance and adhesion strength. Experimental studies have been carried out to determine the optimal composition of the CrB₂master alloy introduced into the composition of the GP-Ir40 surfacing alloy. It has been found that to obtain the hardness of the deposited metal in the range of 450-600 HV, it is necessary to introduce CrB2 into the coating composition, within 10 % of the total mass. Thus, the strength of the alloy is increased by more than 54.41 HV. Tests for corrosion resistance aggressive environments of hydrogen sulfide H₂S, sulfuric acid H₂SO₄were carried out. The wear resistance of ground pumps was evaluated, and the service life of wear-resistant ground pump parts made of the IChH28N2 alloy determined. The new developed self-fluxing surfacing powder material based on iron with a hardening additive will be used restore machine and

	1		T	
			equipment parts operating	
			under conditions of abrasive	
			wear, corrosion and elevated	
			temperatures or corrosive	
			environments Copyright	
58.	Parameters of	DOI:	The article discusses the	Mergalimova, A., Ongar, B., Georgiev, A.,Abitaeva,
	heat	10.1016/j.energy.2021.120	theoretical and practical	R., Bissenbayev, P. Parameters of heat treatment of coal
	treatment of	088	foundations of the study of the	to obtain combustible volatile substances // Energy, 2021,
	coal to obtain	Q1 Engineering: Civil and	possibility of obtaining volatile	224, 120088
	combustible	Structural Engineering	combustible substances	DOI: 10.1016/j.energy.2021.120088
	volatile	6 11 6	released during special heat	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	substances		treatment of coal, with the aim	85101809011&origin=resultslist&featureToggles=FEA
			of replacing ignition fuel oil at	TURE_VIEW_PDF:1
			thermal power plants. The	
			results of an experimental study	
			of the coals of the Saryadyr	
			field of three Kazakhstan	
			deposits with the aim of	
			obtaining volatile combustible	
			substances, as well as the	
			possibility of using these	
			combustible substances as	
			starting fuel, are presented. The	
			results of calculating the heat of	
			combustion of the gas obtained	
			from the presented coal samples	
			at different heating	
			temperatures showed that with	
			an increase in the heating	
			temperature, the heat of	
			combustion of combustible	
			0	
			samples also increases. For all	

			the coal samples under	
			consideration, the maximum	
			value of the heat of combustion	
			is traced at a heating	
			temperature of 600 °C. The	
			greatest value is observed for	
			the coal of the Shubarkul	
			deposit - 22.1 MJ/m ³ , and the	
			minimum value for the brown	
			coal of the Saryadyr deposit is	
			13.5 MJ/m ³ . According to the	
			results of experimental studies,	
			we can conclude that of the	
			three presented coals for	
			producing combustible gas, the	
			most suitable are the coals of	
			the Shubarkul and Maikuben	
			deposits. For use in the boiler	
			unit as a starting fuel, it is	
			sufficient to heat coal to	
			temperatures of 350–450 °C.	
59.	Fractal-	DOI:	The features of convective heat	Turmukhambetov, A.Zh., Aitmanova, K.A., Otegenova,
	structural	10.31489/2020NO2/61-68	transfer of bodies in a turbulent	S.B. Fractal-structural analysis of convection heat
	analysis of	Q4 Engineering: General	environment are considered.	transfer in a turbulent medium // Eurasian Physical
	convection	Engineering	The results of experimental	Technical Journal, 2020, 17(2), crp. 61–68
	heat transfer		research by one of the authors	DOI: 10.31489/2020NO2/61-68
	in a turbulent		are discussed. Experimental	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	medium		data show that the heat transfer	85100316219&origin=resultslist&featureToggles=FEA
			of a spherical body is affected	TURE_VIEW_PDF:1
			by natural convection, the	
			thermo-physical properties of	
			the medium, the tightness of the	
			flow, the turbulent flow regime,	

	1	1		
			etc. Due to these factors, the	
			formula for calculating	
			convective heat transfer, which	
			includes many experimental	
			constants, becomes	
			cumbersome and inconvenient	
			for practical application. The	
			paper presents the results of	
			applying fractal-structural	
			analysis methods to describe	
			experimental data on	
			convective heat exchange of	
			badly streamlined (cylinder and	
			sphere) bodies in a channel.	
			Quantitative relations are	
			obtained that link the intensity	
			of turbulent heat transfer with	
			the criteria for the degree of	
			self-organization.	
60.	Radiation	Q4 Chemistry: Ger	neral The effect of irradiation with	Khromushin, I.V., Yermolaev, Y.V., Kasmamytov, N.K.,
00.	modification	Chemistry	electrons and ions of inert gases	Tusseyev, T., Stanbay, L.A. Radiation modification of
	of	Chemistry	(Ne, Ar, Kr) and oxygen of	BaCe0.85Nd0.15O3-δ // Bulgarian Chemical
	BaCe0.85Nd		various energies on the	Communications, 2020, 51, crp. 49–54
	0.15Ο3-δ		structure, surface state and	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	0.1203		gaseous components in	85096041556&origin=resultslist&featureToggles=FEA
			BaCe0.85Nd0.15O3-δ has been	TURE_VIEW_PDF:1
			studied. It was shown that	TORE_VIEW_IBI.I
			electron irradiation of	
			BaCe0.85Nd0.15O3-δ results	
			in smoothing-out of the	
			irradiated surface relief, while	
			electron irradiation of BaCeO3	
			led to formation of a fine	
			ieu to iormation or a fille	

			pyramidal (needle-shaped) structure on the irradiated	
			surface. It was noted that in case of BaCe0.85Nd0.15O3-δ	
			irradiation with high-energy	
			inert gas ions, solid-phase	
			transformations occurred on the	
			surface of BaCe0.85Nd0.15O3-	
			δ . The conclusion was made about the mechanism of the	
			influence of irradiation with	
			high and low energy heavy ions	
			of inert gases on the state of the	
			gaseous components in	
			BaCe0.85Nd0.15O3-δ , based	
			on the features of defects	
			formation under irradiation	
			with the ions of different	
			energies.	
61.	Kinetics of	DOI:	The analysis of the	Tusseyev, T. Kinetics of radiation-stimulated processes
	radiation-	10.29317/EJPFM.2020040 107	experimental data shows that	on the surface of oxide materials // Eurasian Journal of
	stimulated processes on	Q4 Physics and Astronomy:	the processes of gas adsorption and radiation defects	Physics and Functional Materials, 2020, 4(1), crp. 61–66 DOI: 10.29317/EJPFM.2020040107
	the surface of	Radiation	accumulation in metal oxides	https://www.scopus.com/record/display.uri?eid=2-s2.0-
	oxide	radiation	correlate with each other and	85102791648&origin=resultslist&featureToggles=FEA
	materials		most likely can be described in	TURE_VIEW_PDF:1
			terms of equivalent kinetic	
			equations. Given this	
			circumstance, the kinetics of	
			accumulation of radiation	
			defects in oxides of different	
			metals was analyzed. The	
			obtained equations were used to	

analyze: a) the kinetics of accumulation of radiation defects in different oxide compounds; b) the data on the destruction of radiationinduced defects in the atmosphere of different gases, and on the kinetics of absorption by oxides of oxygen, hydrogen, and carbon dioxide molecules. The results of such analysis are systematized and are given in the form of a table. The following conclusions were made: 1. The quantum yield of radiation defects increases monotonically with growth of the temperature of processing, tending to a certain limit value. 2. The constant of destruction of radicals from ionizing radiation increases as well. 3. The ratio of the number of surface and bulk defects in different oxides can be arranged in the following series: silicon oxide> beryllium oxide> aluminum oxide. Thus, the most optimal (convenient) material for creating absorbing systems by energy intensity is silicon dioxide, and adsorption efficiency beryllium oxide.

		Кафедра ф	изики твердого тела и нелиней	іной физики
62.	Creating a virtual device for processing the results of sorption measurement s in the study of zinc oxide nanorods	DOI: 10.15826/CHIMTECH.202 0.7.4.03 (IF= 0.128; Q4 in Chemistry, Physical)	Abstract The work is devoted to the creation of a virtual device (computer program) for processing the results of sorption analysis of nanomaterials, including for estimating the size of nanoparticles based on the specific surface area. The obtained evaluation results	E. V. Maraeva, N. V. Permiakov, Y. Y. Kedruk, L. V. Gritsenko, Kh. A. Abdullin Creating a virtual device for processing the results of sorption measurements in the study of zinc oxide nanorods //Chimica Techno Acta 2020 - Том 7, Выпуск 4, Страницы 154 — 158 DOI: 10.15826/CHIMTECH.2020.7.4.03
		D.O.Y.	were compared with the scanning electron microscopy data. Photocatalytically active zinc oxide samples were chosen as the object of the study.	
63.	Morphologic al, Structural, and Optical Properties of Silicon Nanostructur es Formed in a Solution Containing Hydrogen Hexafluorosil icate H ₂ (SiF ₆)	DOI: 10.1134/S0030400X20090 234 (IF= 0.283; Q3 in Chemistry, Physical)	Abstract Photoluminescent boron-doped (100)-oriented porous silicon fabricated on a p-type silicon substrate by electrochemical etching in a solution containing fluorosilicic acid and ethanol is studied. The morphological, structural, and optical properties of silicon nanostructures obtained in solutions containing H ₂ (SiF ₆) and ethanol are analyzed in comparison with the corresponding characteristics	Zhumatova S.A., Manakov S.M.,, Sagidolda Y.,, Darmenkulova M.B.,, Azamat R.M.,, Alpysbaeva B.Y.,, Dikhanbaev K.K. Morphological, Structural, and Optical Properties of Silicon Nanostructures Formed in a Solution Containing Hydrogen Hexafluorosilicate H ₂ (SiF ₆) 1 September 2020 - Том 128, Выпуск 9, Страницы 1487 — 1491 DOI: 10.1134/S0030400X20090234

			of samples formed in solutions of HF and ethanol. The morphological, structural, and optical properties were studied using scanning probe microscopy and spectrophotometry. It is shown that the porous silicon samples formed in solutions containing H ₂ (SiF ₆) and ethanol have better optical properties, in particular, they exhibit more intense photoluminescence than the samples obtained in HF–ethanol solutions.	
64.	Physical processes during the formation of silicon- lithium p-i-n structures using double- sided diffusion and drift methods	DOI: 10.3390/ma14185174 (IF= 0.682; Q2 in Chemistry, Physical)	ABSTRACT In this paper, we described a method of double-sided diffusion and drift of lithiumions into monocrystalline silicon for the formation of the large-sized, p-i-n structured Si(Li) radiation detectors. The p-i-n structure is a p-n junction with a doped region, where the "i-region" is between the n and the p layers. A well-defined i-region is usually associated with p or n layers with high resistivities. The p-i-n structure is mostly used in diodes and in some types of semiconductor	Saymbetov A., Muminov R., Japashov N., Toshmurodov Y.,, Nurgaliyev M., Koshkarbay N.,, Kuttybay N., Zholamanov B., Jing Z. Physical processes during the formation of silicon-lithium p-i-n structures using double-sided diffusion and drift methods September 2021 - Том 14, Выпуск 18 DOI: 10.3390/ma14185174

radiation detectors. The uniqueness of this method is that, in this method, the processes of diffusion and drift of lithium-ions, which are the main processes in the formation of Si(Li) p-i-n structures, are produced from both flat sides of cylindricalshaped monocrystalline silicon, at optimal temperature (T = 420 °C) conditions of diffusion, and subsequently, with synchronous supply of temperature (from 55 to 100 °C) and reverse bias voltage (from 70 to 300 V) during drift of lithium-ions into silicon. Thus, shortening the manufacturing time of the detector and providing a more uniform distribution of lithiumions in the crystal volume. Since, at present, the development of manufacturing of large-sized Si(Li) detectors is hindered due to difficulties in obtaining a uniformly compensated large area and time-consuming manufacturing process, the proposed method may open up new possibilities

			in detector	
			manufacturing. View Full-Text	
65.	Zoo-technical	DOI:		Assilhalray C. Jalthan V. Janashay N.
03.				Assilbekov S., Iskhan K., Japashov N.,
	<u>features of</u>	10.3844/ajavsp.2021.15.22		Orynbassarova A. Zoo-technical features of tabun
	tabun horses	(IF= 0.174; Q3 in		horses in almaty region of Republic of Kazakhstan
	<u>in almaty</u>	Chemistry, Physical)		2021 - Том 16, Выпуск 1, Страницы 15 – 22
	region of			
	Republic of			DOI: 10.3844/ajavsp.2021.15.22
	<u>Kazakhstan</u>			
66.	<u>Optimization</u>	DOI:	ABSTRACT	Muminov R.A., Radzhapov S.A., Saymbetov A.K.,
	technology of	10.34049/bcc.52.1.4777	In this work, the features of	Manatbayev R.K.,, Toshmurodov Yo.K.,Japashov
	<u>large-size</u>	(IF = 0.179; Q4 in	manufacturing and	N.M., Kuttybay N.B., Georgiev A.G. Optimization
	Si(Li) p-i-n	Chemistry, Physical)	investigating the	technology of large-size Si(Li) p-i-n structures for X-ray
	structures for		electrophysical characteristics	detectors 2020- Том 52, Выпуск 1, Страницы 5 – 8
	<u>X-ray</u>		of Si(Li) p-i-n structures for	DOI: 10.34049/bcc.52.1.4777
	detectors		detectors with a big volume of	
			working area were considered.	
			The technology of	
			manufacturing of bigarea (up	
			to 110 mm) semiconductor	
			detector structures with	
			thickness of sensitive area up	
			to 10 mm, from lowresistance	
			silicon grown by the	
			Czochralski process and with	
			high-resistance silicon obtained	
			by the floating zone melting	
			method was developed. The I-	
			V, C-V and noise vs voltage	
			dependences of detectors	
			produced from these crystals	
			were compared. Moreover, the	
			were compared. Moreover, the	

			methods of double-sided diffusion and drift of lithium ions were applied to these crystals. Also, the methods of	
			providing highly uniform	
			compensated regions of	
			detectors were considered and	
			methods for laying uniform	
			effective ohmic contacts on a	
			big area of the structure were	
	*** 1 1 1	DOI 10.1000/10.51	developed	
67.	High-school	DOI: 10.1088/1361-	ABSTRACT	Nuri Balta, Nursultan Japasho, Mustafa
	students'	6552/ab4df9	Student cognition in response	Abdulbakioglu and Alandeom W Oliveira High-school
	cognitive	(IF= 0.343; Q3 in	to intuitive and counterintuitive	students' cognitive responses to counterintuitive physics
	responses to	Chemistry, Physical)	stimuli in the school science	problems 2020 - Том 55, Выпуск 1
	counterintuiti		curriculum is not well	DOI: 10.1088/1361-6552/ab4df9
	ve physics problems		understood. To address this	
	problems		issue, this study examines high	
			school students' cognitive	
			responses to three	
			counterintuitive physics	
			problems. Our analysis reveals	
			that student success in arriving	
			at counter-intuitive physical	
			responses is related to the	
			depth of their interpretation of	
			problem statements. When students were able to see the	
			deep structure of a problem	
			(i.e. recognize underlying	
			physical principles and	
			concepts applicable to a	
			problem situation), they were	

			more likely to arrive at the scientifically accepted response, despite its counter-intuitive nature. Our findings suggest that students' difficulties in solving counterintuitive problems can be due to the emergence of a superficial focus when reading problem statements. They also raise the possibility of student development of disciplinary intuition based on accepted scientific knowledge ('physics intuition').	
68.	Application of additional leveling drift process to improve the electrophysic al parameters of large sized Si (Li) p-i-n structures	DOI: 10.21272/jnep.12(1).01006 (IF= 0.225; Q3 in Chemistry, Physical)	ABSTRACT The development of large sized Si (Li) detectors (with a sensitive region diameter more than 110 mm), with high energy and positional resolutions, signal linearity over a wide energy range, for alpha, beta and gamma particles is still a rather difficult technological task. This work proposes a technology to improve manufacturing procedure of pi-in structured Si(Li) detectors. We consider a method of	Muminov R.A., Ergashev G.J., Saymbetov A.K., Toshmurodov Y.K., Radzhapov S.A., Mansurova A.A., Japashov N.M., Svanbayev Y.A. Application of additional leveling drift process to improve the electrophysical parameters of large sized Si (Li) p-i-n structures 2020 - Выпуск 1 DOI: 10.21272/jnep.12(1).01006

additional "leveling" drift to already prepared Si (Li) detectors to reach a uniformly compensated sensitive region throughout the entire volume, and to smooth out local areas of uncompensated detector regions at a certain temperature and electric field. Experimentally obtained results show that conducting an additional "leveling" drift process ensures uniform distribution of lithium ions in silicon and is one of the main technological operations. The choice of the temperature-time regime of the "leveling" drift depends on the specific resistance of the initial material. Therefore, an additional "leveling" drift was carried out on detectors obtained by p-type monocrystalline silicon with high resistance (obtained by the float-zone method) and with low resistance (obtained by the Czochralski method), and their electrophysical responses were compared. Consequently, it was determined that for low-

			resistance materials, "leveling"	
			drift is more effective.	
69.	<u>Electrical</u>	DOI:	ABSTRACT	Dikhanbayev K.K Bondarev A.I., Ikramova S.B.,
	properties of	10.31489/2020NO1/54-58	When monitoring the	Shabdan E Electrical properties of silicon nanowires
	silicon	(IF= 0.194; Q4 in	environment, measurements of	under ammonia adsorption conditions 2020 - Том 17,
	nanowires	Chemistry, Physical)	the concentration and	Выпуск 1, Страницы 54 – 58
	under		composition of the gas phase of	DOI: 10.31489/2020NO1/54-58
	ammonia		various substances are of great	
	adsorption		importance. To solve such	
	conditions		problems, resistive-type	
			semiconductor sensors are of	
			interest. The proposed sensors	
			based on silicon nanowires	
			have several advantages: high	
			sensitivity and possibility to	
			work at room temperature. This	
			in turn simplifies the design	
			and reduces the cost of the	
			sensors. All this indicates the	
			relevance of the investigated	
			gas sensor	
70.	High	DOI:	ABSTRACT	Khaniyev, B.A., Sagidolda, Y., Dikhanbayev,
	sensitive	10.1080/23311916.2020.18	2 5 -	K.K., Tileu, A.O., Ibraimov, M.K. High sensitive
	NH ₃ sensor	10880	In the current study, porous	NH ₃ sensor based on electrochemically etched porous
	based on	(IF= 0.312; Q2 in)	silicon (por-Si) samples were	silicon Том 7, Выпуск 11 January 2020
	electrochemi	Chemistry, Physical)	fabricated by electrochemical	DOI: 10.1080/23311916.2020.1810880
	cally etched		etching at different times	
	porous		(20 min, 40 min, 60 min).	
	silicon		Scanning electron microscope	
			(SEM) images of horizontal	
			cross-sections of the samples	
			showed the formation of pores.	
			The etched samples' porosity	
	1	<u>l</u>		

was determined by the	
gravimetric method and	
amounted to 59.5%, 72.7%,	
83.3%, respectively. Optical	
characteristics such as Raman	
spectra and photoluminescence	
(PL) spectra were obtained.	
The current-voltage and	
capacitance-voltage	
characteristics were also	
measured to calculate the	
sensitivity of the samples. The	
study results show that sample,	
which is etched for 40 minutes	
has a maximum response value	
to ammonia (NH ₃) gas than	
others, and the sensitivity is	
33.25. The results	
demonstrated that it is possible	
to develop a high sensitive	
sensor device based on por-Si	
for determining NH ₃ gas in	
concentrations below 0.1 ppm	
at room temperature.	

71.	Angular	DOI: 10.1063/10.0000863	ABSTRACT	Aichner B., Mletschnig K.L., Müller B., Karrer M.,
/1.		(IF=0.356; Q3 in	The angular dependence of	Dosmailov M., Pedarnig J.D., Kleiner R., Koelle D.
	<u>magnetic-</u> field	Chemistry, Physical)	magnetic-field	Lang W
		Chemistry, Fhysical)	commensurability effects in	Lang w
	dependence		l •	A novelen measure is field demandence of ventor mosteling
	of vortex		thin films of the cuprate high-	Angular magnetic-field dependence of vortex matching
	matching in		critical-temperature	in pinning lattices fabricated by focused or masked
	pinning		superconductor	helium ion beam irradiation of superconducting
	lattices		YBa ₂ Cu ₃ O _{7-δ} (YBCO) with an	YBa ₂ Cu ₃ O _{7-d} thin films
	fabricated by		artificial pinning landscape is	
	<u>focused or</u>		investigated. Columns of point	Том 46, Выпуск 4, Страницы 331 - 3371 April 2020
	<u>masked</u>		defects are fabricated by two	DOI: 10.1063/10.0000863
	<u>helium ion</u>		different methods of ion	
	<u>beam</u>		irradiation — scanning the	
	<u>irradiation of</u>		focused 30 keV ion beam in a	
	superconduct		helium ion microscope or	
	<u>ing</u>		employing the wide-field	
	YBa ₂ Cu ₃ O ₇₋		75 keV He ⁺ beam of an ion	
	dthin films		implanter through a stencil	
	_		mask. Simulations of the ion-	
			target interactions and the	
			resulting collision cascades	
			reveal that with both methods	
			square arrays of defect	
			columns with sub-µm spacings	
			can be created. They consist of	
			dense point-defect clusters,	
			which act as pinning centers	
			for Abrikosov vortices. This is	
			verified by the measurement of	
			commensurable peaks of the	
			critical current and related	
			minima of the flux-flow	
			resistance vs magnetic field at	
			resistance vs magnetic field at	

			the matching fields. In oblique magnetic fields, the matching features are exclusively governed by the component of the magnetic field parallel to the axes of the columnar defects, which confirms that the magnetic flux is penetrated along the defect columns. We demonstrate that the latter dominate the pinning landscape despite of the strong intrinsic pinning in thin YBCO films.	
72.	Dual-band optical imaging system- integrated patch antenna based on anisotropic fractal for earth- observation CubeSats	DOI: 10.1016/j.asej.2021.07.010 (IF= 0.505; Q1 in Chemistry, Physical)	ABSTRACT This paper presents a dualband optical imaging systemintegrated patch antenna based on an anisotropic fractal for Earth-observation CubeSats. The antenna operates at S-band frequencies. The size of the antenna is chosen to match the end face of the CubeSats. The antenna's main characteristics are studied using simulation in Computer Simulation Technology (CST) software; prototypes are developed to verify these characteristics. Double-sided Glass Epoxy Sheet FR-4 is used to	Meirambekuly N., Temirbayev A.A., Zhanabaev Z.Z., Karibayev B.A.Namazbayev T.A., Khaniyev B.A., Khaniyeva A.K. Dual-band optical imaging system- integrated patch antenna based on anisotropic fractal for earth-observation CubeSats 2021 DOI: 10.1016/j.asej.2021.07.010

			By studying the antenna prototype, realized gain up to 4 dBi and 2.15 dBi at two resonant frequencies of the antennas with different substrate heights are obtained. Small size, low cost, dualband, and integration with the imaging system allow achieving the entire CubeSat system's efficiency.	
73.	Scale- invariant and wave nature of the Hubble parameter	DOI: 10.31489/2021NO2/81-89 (IF= 0.194; Q4 in Chemistry, Physical)	Abstract The value of the global Hubble parameter corresponding to astrophysical observations was determined theoretically without using ACDM models. A nonlinear fractal model of the connection between the distance to the observed galaxy and its coordinate is proposed. Distance is defined as a fractal measure, the measurement scale of which, in contrast to the known fractal models, corresponds to the deviation of the desired measure itself from its fixed value (radius of zero gravity), relative to which the scale invariance is assumed. We used the dimension of our proposed specific anisotropic	Zhanabaev, Z.Zh., Ussipov, N.M., Khokhlov, S.A. Scale-invariant and wave nature of the Hubble parameter Том 18, Выпуск 2, Страницы 81 – 892021 DOI: 10.31489/2021NO2/81-89

	1			
			fractal, which simulates the	
			increase in the distance to the	
			observation point. It is shown	
			that this dimension is also the	
			maximum dimension of the	
			strange attractor of the phase	
			portrait of the equation of	
			gravitational waves and sets of	
			galaxies from different catalogs	
74.	Width of	DOI:	ABSTRACT	Zhanabaev, Z.Zh., Ikramova, S.B., Tileu,
	energy band	10.31489/2020NO2/39-44	The aim of this work is to	A.O., Turlykozhaeva, D.A. Width of energy band gap
	gap of	(IF=0.194; Q4 in	experimentally clarify the	of nanoporous semiconductor films Том 17, Выпуск
	nanoporous	Chemistry, Physical)	reasons for the appearance of	2, Страницы 39 – 442020 DOI:
	semiconducto		jumps in the current and	10.31489/2020NO2/39-44
	<u>r films</u>		memory of semiconductor	
			nanoporous structures.Porous	
			nanostructures were obtained	
			by electrochemical etching.	
			The current-voltage	
			characteristics of the samples	
			were measured for porous	
			silicon and on thin films of a	
			chalcogenide glassy	
			semiconductor. The existence	
			of jump-like switching and	
			current hysteresis in porous	
			silicon nanofilms under laser	
			illumination is shown	
			experimentally.A connection	
			between the switching voltage	
			values and the dependence of	
			the band gap on the porosity of	
			nanofilms is found. These	

			results make it possible to construct a theory of current switching and its hysteresis based on the concepts of the theory of second-order phase transitions.	
75.	Hardware implementati on of the coding algorithm based on FPGA	DOI: 10.1088/1757-899X/1047/1/012137 (iF= 0.198; Q4 in Chemistry, Physical)	In this article, the efficient implementation multiplier of polynomials irreducible polynomials modulo for cryptographic encryption and decryption using FPGA is presented. For this, the Nexys 4 board based on the Artix-7 Field Programmable Gate Array (FPGA) from Xilinx was chosen. Verilog HDL is used to describe the circuit for reducing a number modulo. The results of a timing simulation of the device are presented in the form of time diagrams for a given 8-bit number, confirming the correct operation of the device. The developed encryption algorithm on the basis of nonpositional polynomial notations is intended for software, hardware, and also software and hardware implementation.	Ibraimov M.K., Tynymbayev S.T., Park J., Zhexebay D.M., Alimova M.A. Hardware implementation of the coding algorithm based on FPGA Том 1047, Выпуск 111 February 2021 DOI: 10.1088/1757-899X/1047/1/012137

			The main hardware- implemented device in non- positional algorithm of the cryptographic transformation is a device for the multiplication of polynomials irreducible polynomials modulo, which produces routine calculations on data encryption. These mathematical operations are computationally intensive and fundamental arithmetic operations, which are intensively used in many fields such as cryptography, number theory, and finite field arithmetic.	
76.	Period bouncer cataclysmic variable EZ Lyn in quiescence	DOI: 10.3847/1538- 4357/ac0e36 (IF= 2.376; Q1 in Chemistry, Physical)	ABSTRACT We report the study of the accretion disk structure of the period bouncer cataclysmic variable EZ Lyn (SDSS J080434.20+510349.2) in quiescence based on our new time-resolved photometric and spectroscopic observations and data extracted from archives. The object magnitude now is $V = 17.95(5)$, close to its brightest before the first superoutburst in 2006. We	Amantayeva A, Zharikov S., Page K.L., Pavlenko E., Sosnovskij A., Khokhlov S., Ibraimov M. Period bouncer cataclysmic variable EZ Lyn in quiescence Том 918, Выпуск 210 September 2021 DOI: 10.3847/1538-4357/ac0e36

confirmed the presence of the small eclipse in the optical light curve. The spectra obtained in quiescence at different epochs look similar. However, the contribution of the disk and intensities of emission lines are strongly varied. We singled out pure accretion disk spectra and found that the Balmer decrement $H\alpha:H\beta:H\gamma:H\delta=$ 1.61:1.0:0.76:0.59 is comparable with one at bright accretion disks in longer period cataclysmic variables. The decrement suggests that emission lines are excited collisionally in an optical thin part of the disk with average density and temperature of $log N_0 = 12.5(2)$ and T = (10- $15) \times 10^3$ K. Based on the photometric data and our modeling techniques, we redetermined the mass of $M_{\rm WD} = 0.85(1) \, M_{\odot}$ and the current effective temperature $T_{\rm WD,eff}$ = 11,250(50) K of the white dwarf. The secondary has mass of $M_2 = 0.042(14) M_{\odot}$. The system inclination is $79.0^{\circ}(2)$.

			The mass accretion rate is about $\dot{M} \approx (0.3-3.0) \times 10^{-12} M_{\odot}$ yr ⁻¹ . The disk luminosity, together with results from light-curve modeling, suggests a low effective temperature $\sim 2500 \text{K}$ of the continuum emitting region, where also the spiral arm pattern is hosted.	
77.	Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud	DOI: 10.1051/0004-6361/202038632 (IF= 2.137; Q1 in Chemistry, Physical)	Abstract Aims. We investigate the role of selective dissociation in the process of star formation by comparing the physical parameters of protostellar-prestellar cores and the selected regions with the CO isotope distributions in photodissociation regions. We seek to understand whether there is a better connection between the evolutionary age of star forming regions and the effect of selective dissociation	Komesh T., Baan W., Esimbek J., Zhou J., Li D., Wu G., He Y., Rosli Z., Ibraimov M. Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud Tom 6441 December 2020 DOI: 10.1051/0004-6361/202038632

78.	The device	DOI: 10.32014/2020.2518-	Abstract	Kalimoldayev M., Tynymbayev S., Gnatyuk S.,
	for	170X.60	We consider a device for	Ibraimov M., Magzom M. The device for multiplying
	multiplying	(IF= 0.323; Q3 in)	multiplying polynomials	polynomials modulo with analysis of two least
	polynomials	Chemistry, Physical)	modulo where two bits of the	significant bits of the multiplier per step Том 3,
	modulo with		polynomial	Выпуск 441, Страницы 102 – 1092020 DOI:
	analysis of		multiplier are analyzed per	10.32014/2020.2518-170X.60
	two least		multiplication step. Such a	
	significant		device can serve as the basic	
	bits of the		unit for building cryptosystems	
	multiplier per		based on non-positional	
	step		polynomial number systems,	
			where the binary representation	
			of the polynomial multiplicand	
			can show a fragment of the	
			encrypted text, and the binary	
			representation of the	
			polynomial multiplier can	
			serve as a	
			secret key. The module is a	
			binary representation of the	
			irreducible polynomial of these	
			two polynomials.	
79.	Design and	DOI:	Abstract	Aitkhozhayeva, Y.Zh., Tynymbayev, S., Adilbekkyzy,
	research of	10.31489/2020NO1/151-	A behavioral model of the	S., Skabylov, A., Ibraimov, M. Design and research of
	<u>the</u>	156	modular reduction device with	the behavioral model for the modular reduction device
	<u>behavioral</u>	(IF= 0.194; Q4 in	optimal hardware costs was	Том 17, Выпуск 1, Страницы 151 – 1562020 DOI:
	model for the	Chemistry, Physical)	designed in CAD Quartus	10.31489/2020NO1/151-156
	<u>modular</u>		Prime Lite Edition. An	
	<u>reduction</u>		algorithm of operation is	
	<u>device</u>		implemented in the Verilog	
			HDL language. A method is	
			used where, at each step of the	
			calculation, the value of either	

			tripled, doubled, or single	
			value of the module is	
			subtracted from the most	
			significant bits shifted to the	
			left by two. Functional and	
			timing modeling of the	
			behavioral model algorithm	
			using examples was carried out	
			and the correctness of the	
			algorithm was confirmed. The	
			device circuit at the register	
			transfer level (RTL) for the	
			low-budget FPGA Cyclone VE	
			5CEBA4F23C7 from Altera is	
			obtained. A timing analysis	
			was performed using a time	
			analyzer to determine the	
			maximum clock frequency for	
			the principal and behavioral	
			models in various working	
			conditions.	
80.	<u>Halloysite</u>	DOI:	ABSTRACT	Kornilova A.V., Novikov S.M., Kuralbayeva G.A., Jana
	<u>nanotubes</u>	10.3390/app11104565	Halloysite nanotubes (HNTs)	S., Lysenko I.V., Shpichka A.I., Stavitskaya A.V.,
	<u>with</u>	(IF= 0.435; Q2 in	with immobilized gold (Au)	Gorbachevskii M.V., Novikov A.A., Ikramova S.B.,
	immobilized	Chemistry, Physical)	and silver (Ag) nanoparticles	Timashev P.S., Arsenin A.V. Halloysite nanotubes
	<u>plasmonic</u>		(NPs) belong to a class of	with immobilized plasmonic nanoparticles for
	<u>nanoparticles</u>		nanocomposite materials	biophotonic applications Том 11, Выпуск 102 May
	<u>for</u>		whose physical properties and	2021
	<u>biophotonic</u>		applications depend on the	DOI: 10.3390/app11104565
	<u>applications</u>		geometry of arrangements of	
			the plasmonic nanoparticles on	
			HNT' surfaces. We explore	
			HNTs:(Au, Ag)-NPs as	

potential nano-templates for surface-enhanced Raman scattering (SERS). The structure and plasmonic properties of nanocomposites based on HNTs and Au- and Ag-NPs are studied by means of the transmission electron microscopy and optical spectroscopy. The optical extinction spectra of aqueous suspensions of HNTs:(Au, Ag)-NPs and spatial distributions of the electric fields are simulated, and the simulation results demonstrate the corresponding localized plasmonic resonances and numerous "hot spots" of the electric field nearby those NPs. In vitro experiments reveal an enhancement of the protein SERS in fibroblast cells with added HNTs:Ag-NPs. The observed optical properties and SERS activity of the nanocomposites based on HNTs and plasmonic NPs are promising for their applications in biosensorics and biophotonics.

0.1	Evoluation	DOI: 10 1000/17/2	A DOTTO A COT	Imanhayaya A Tugayahali V Candalaasa D
81.	<u>Evaluating</u>	DOI: 10.1088/1742-	ABSTRACT	Imanbayeva A., Tursynbek Y., Syzdykova R.,
	the co	6596/1783/1/012042	Recently, the emergence and	Mukhamedova A Evaluating the effectiveness of
	<u>effectiveness</u>	(IF= 0.210; Q4 in	increasingly widespread of	information security based on the calculation of
	<u>of</u>	Chemistry, Physical)	wireless networks has	information entropy Том 1783, Выпуск 112 February
	<u>information</u>		generated considerable interest	2021
	<u>security</u>		in the information-theoretical	DOI: 10.1088/1742-6596/1783/1/012042
	based on the		approach to ensuring secure	
	calculation of		communications. The basic	
	<u>information</u>		principle of information-	
	<u>entropy</u>		theoretic security requires a	
			combination of cryptographic	
			methods with channel coding	
			techniques that use the	
			randomness of communication	
			channels to ensure that	
			messages sent cannot be	
			intercepted or decrypted by a	
			1 21 2	
			third party maliciously	
			eavesdropping on the wireless	
			medium. This paper discusses	
			the information-entropy	
			method for assessing security.	
			We show that information-	
			theoretical security means that	
			any algorithm has a negligible	
			probability of violating the	
			security property. This is the	
			same as unconditional security:	
			it does not rely on any	
			computational assumptions and	
			is not limited to probabilistic	
			violators.	

82.	<u>Thermal</u>	DOI: 10.1007/s11182-021-	Abstract	Mikhailova S.L., Prikhodko O.Y., Mukhametkarimov
	Stability of	02272-у	The structure and optical	Y.S., Dautkhan K., Doseke U.A., Kozyukhin S.A.,
	the Structure	(IF= 0.317; Q3 in	properties of titanium dioxide	Kozik V.V., Ismailova G.A., Maksimova S.Y.,
	and Optical	Chemistry, Physical)	films have been studied during	Tarapeyeva A.Y., Zhakypov A.S. Thermal Stability of
	Properties of		annealing from 100 to 400°C.	the Structure and Optical Properties of Nanostructured
	<u>Nanostructur</u>		The films were obtained by	<u>TIO₂ Films</u> Том 63, Выпуск 12, Страницы 2045 -
	<u>ed</u>		ion-plasma high-frequency	2051April 2021
	TIO ₂ Films		magnetron sputtering of	DOI: 10.1007/s11182-021-02272-y
			polycrystalline rutile target in	
			an argon atmosphere. It was	
			shown that as-prepared	
			TiO ₂ films are nanostructured	
			with ~8 nm rutile crystallites	
			and ~3.3 Å interplanar	
			distances and contain a small	
			fraction of anatase. The optical	
			band gap of the films is 3.01	
			eV, and the refractive index	
			under normal conditions is	
			2.25. The film annealing at	
			tamperatures from 100 to	
			400°C does not practically	
			change their structure, optical	
			band gap, and refractive index	
			under normal conditions, i.e.,	
			the obtained nanostructured	
			TiO ₂ films are thermally stable.	

83.	Modernizatio	DOI: 10.1088/1742-	ABSTRACT	L Mikhailov, S Mikhailova, R Yersaiyn, G Ismailova, N
65.		6596/1615/1/012018		•
	<u>n of</u>		In terms of COVID-19	Kenes, R Makhmutov // Modernization of mechatronic
	mechatronic	(IF=0.210, Q4 in	pandemic, the mechatronic	smart windows system to counteract the spread of
	<u>smart</u>	Chemistry, Physical)	system, essentially a smart	<u>COVID-19 //</u> Том 1615, Выпуск 125 August 2020 //
	<u>windows</u>		window, supplemented with	DOI: 10.1088/1742-6596/1615/1/012018
	system to		devices for interception and	
	counteract		disinfection of drops and	
	the spread of		capsules with viruses and	
	COVID-19		bacteria, both outside and	
			inside. This allows preventing	
			the ingress of infected aerosols	
			into the room along with	
			streams of air rising along the	
			buildings and spreading inside	
			it in the presence of infected	
			people along with turbulent jets	
			of air. With widespread use,	
			the system helps to reduce the	
			spread of infection, transmitted	
			mainly by airborne droplets.	
			The hardware for controlling	
			the window system is	
			performed on a board from the	
			Arduino MEGA 2560 R3	
			ATMEGA16U2 family, two	
			control boards with ten relays	
			and ten sensor modules.	
			Control program for the	
			window system control circuit	
			is written in the LabVIEW	
			graphical programming	
			grapinear programming	

			environment (National Instrument USA).	
0.4	E-4 1-1	DOI 10 2047/1520	,	H. V. V. Harlad C. Zhan I. I. Evindada I. Conta A.M.
84.	Extended HNCO, SiO, and HC ₃ N emission in 43 southern star-forming regions	DOI 10.3847/1538- 4365/abd0fb (IF= 3.546; Q1 in Chemistry, Physical)	We have selected 43 southern massive star-forming regions to study the spatial distribution of HNCO 4 ₀₄ –3 ₀₃ , SiO 2–1, and HC ₃ N 10–9 line emission and to investigate their spatial association with the dust emission. The morphology of HNCO 4 ₀₄ –3 ₀₃ and HC ₃ N 10–9 agrees well with the dust emission. HC ₃ N 10–9 tends to originate from more compact regions than HNCO 4 ₀₄ –3 ₀₃ and SiO 2–1. We divided our sources into three groups: those in the Central Molecular Zone (CMZ), those associated with bubbles (Bubble), and the remaining sources, which are termed "normal star-forming regions" (NMSFR). These three groups, subdivided into three different categories with respect to line widths, integrated intensities, and column densities, hint at the presence of different physical and chemical processes. We find that the dust	He YX., Henkel C., Zhou JJ., Esimbek J., Stutz A.M., Liu HL., Ji WG., Li DL., Wu G., Tang XD., Komesh T.,Sailanbek S. Extended HNCO, SiO, and HC ₃ N emission in 43 southern star-forming regions Том 253, Выпуск 116 February 2021 DOI 10.3847/1538-4365/abd0fb

			temperature T _d , and the abundance ratios N _{HNCO} /N _{SiO} and N _{HNCO} /N HC3N show a decreasing trend toward the central dense regions of CMZ sources, while N _{HC3N} /N _{SiO} moves in the opposite direction. Moreover, a better agreement is found between T _d and N _{HC3N} /N _{SiO} in Bubble and NMSFR category sources. Both outflow and inflow activities have been found in eight of the 16 bubble and NMSFR sources. The low outflow detection rate indicates either that in these sources the SiO 2–1 line wing emission is below our sensitivity limit or that the bulk of the SiO emission may be produced by	
			that the bulk of the SiO	
85.	Ammonia observations towards the Aquila Rift cloud complex	DOI 10.1051/0004- 6361/202037659 (IF= 2.137; Q1 in Chemistry, Physical)	Abstract We surveyed the Aquila Rift complex including the Serpens South and W 40 regions in the NH ₃ (1,1) and (2,2) transitions making use of the Nanshan 26-	Tursun K., Esimbek J., Henkel C, Tang X., Wu G, Li D.,Zhou J.,He Y.,Komesh T.,Sailanbek S. Ammonia observations towards the Aquila Rift cloud complex Том 6431 November 2020 DOI 10.1051/0004- 6361/202037659

m telescope. Our observations cover an area of $\sim 1.5^{\circ} \times 2.2^{\circ}$ $(11.4 \text{ pc} \times 16.7 \text{ pc})$. The kinetic temperatures of the dense gas in the Aquila Rift complex obtained from NH₃ (2,2)/(1,1)ratios range from 8.9 to 35.0 K with an average of $15.3 \pm 6.1 \text{ K}$ (errors are standard deviations of the mean). Low gas temperatures are associated with Serpens South ranging from 8.9 to 16.8 K with an average of 12.3 ± 1.7 K, while dense gas in the W 40 region shows higher temperatures ranging from 17.7 to 35.0 K with an average of 25.1 \pm 4.9 K. A comparison of kinetic temperatures derived from para-NH₃ (2,2)/(1,1) against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low-mass-star formation region of Serpens South. In the high-mass-star formation region W 40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH_3 (1,1) is found to be

positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH₃ (para+ortho) abundance obtained by a comparison with Herschel infrared continuum data representing dust emission, we find values from 0.1×10^{-8} to 2.1 $\times 10^{-7}$ with an average of 6.9 $(\pm 4.5) \times 10^{-8}$. Serpens South also shows a fractional total-NH₃ (para+ortho) abundance ranging from 0.2×10^{-8} to 2.1 $\times 10^{-7}$ with an average of 8.6 $(\pm 3.8) \times 10^{-8}$. In W 40, values are lower, between 0.1 and 4.3 $\times 10^{-8}$ with an average of 1.6 $(\pm 1.4) \times 10^{-8}$. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W 40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak

			emission at higher Galactic	
			longitudes. However, the	
			presence of a physical	
			connection between the two	
			parts remains questionable.	
86.	G15.684-	DOI 10.3847/1538-	ABSTRACT	Zhou J., Zhou D, Esimbek J., Baan W., Wu G., Ji W.,
	0.29: One of	4357/ab94c0	The bubble G15.684-0.29 has a	He Y., Li D., Sailanbek S, Komesh T., Tang X.
	the Largest	(IF = 2.376; Q1 in	radius of 15.7 pc. Its large size	G15.684-0.29: One of the Largest Galactic Infrared
	Galactic	Chemistry, Physical)	indicates that it may have	Bubbles Showing Strong Evidence of Triggered Star
	<u>Infrared</u>		enough time to trigger star	Formation Том 897, Выпуск 11 July 2020 DOI
	<u>Bubbles</u>		formation. We identify 39	10.3847/1538-4357/ab94c0
	Showing		dense cold clumps around the	
	Strong		bubble from the Hi-GAL	
	Evidence of		survey. All of them satisfy the	
	<u>Triggered</u>		criteria for forming massive	
	<u>Star</u>		stars, and most of them lie in	
	<u>Formation</u>		the bubble shell. We identify	
			19 molecular clumps around	
			the bubble from the $^{12}CO(3-2)$	
			survey, all of which are	
			gravitationally bound. We	
			found 9 Class I YSOs, 28 Class	
			II YSOs, and 12 transition	
			disks (TDs) around the bubble.	
			For those young stellar objects	
			(YSOs) located within the	
			bubble boundary, 6 of 7 Class I	
			YSOs lie in the shell, 15 of 22	
			Class II YSOs lie inside the	
			bubble, and 3 of 5 TDs lie	
			inside the bubble. The	
			dynamical age of G15.684-0.29	
			in a turbulent medium is ~4	

			Myr, which is much greater	
			than the shell fragmentation	
			<u> </u>	
			time, ~0.82–1.74 Myr. We	
			suggest that triggered star	
			formation may be ongoing in	
			the shell of the bubble, and the	
			collect and collapse model may	
			work here. However, we	
			cannot rule out the possibility	
			that the radiation-driven	
			implosion model may work on	
			the formation of some YSOs.	
			As we expected, the larger	
			bubble has a much longer	
			dynamical age, but we failed to	
			find a clear age gradient for	
			YSOs around the bubble.	
87.	<u>Intelligent</u>	DOI	ABSTRACT	Tukymbekov D., Saymbetov A., Nurgaliyev
	autonomous	10.1016/j.energy.2021.120	Existing traditional street	M.,Kuttybay N.,Dosymbetova G.,Svanbayev Y.
	street lighting	902	lighting systems are	Intelligent autonomous street lighting system based on
	system based	(IF= 1.961; Q1 in Modeling	characterized by a high level of	weather forecast using LSTM EnergyTom 23115
	on weather	and Simulation)	energy consumption compared	September 2021
	forecast using		to automated intelligent	
	<u>LSTM</u>		systems that offer different	
			operating modes depending on	
			traffic and power system load.	
			The most promising energy	
			sources systems are hybrid	
			installations that switch the	
			load to the grid in adverse	
			weather conditions. Such	
			systems may increase the	
			energy efficiency of the street	

lighting system, but they are not completely autonomous. In this case, the most important problem is to provide the street lighting system with energy in adverse weather conditions. In this paper, an autonomous street lighting system with adaptive energy consumption based on weather forecast was shown. The proposed street lighting system is completely independent of traditional power sources and is completely powered by solar panels. The main energy consumers of a street lighting system are lamps. The consumption of lamps can be changed to the minimum brightness level required by outdoor lighting standards. Forecasts of energy generation by solar panels can be obtained using **LSTM**. It is based on weather and solar radiation forecasts data for the coming days. The brightness levels of lamps are calculated and changed using the methods proposed in this paper. The probability of reaching the critical level of batteries does

			not exceed 0.10% and fluctuates around 0.05% most of the time when simulating for 1000 days under random weather conditions. Simulation of energy consumption by the street lighting system using the proposed method shows stable and sustainable performance in Almaty, Kazakhstan. The obtained results in this work can be used for designing autonomous street lighting and outdoor lighting systems.	
88.	Physical processes during the formation of silicon- lithium p-i-n structures using double- sided diffusion and drift methods	DOI: 10.3390/ma14185174 (IF= 0.682; Q2 in Condensed Matter Physics)	ABSTRACT In this paper, we described a method of double-sided diffusion and drift of lithiumions into monocrystalline silicon for the formation of the large-sized, p-i-n structured Si(Li) radiation detectors. The p-i-n structure is a p-n junction with a doped region, where the "i-region" is between the n and the p layers. A well-defined iregion is usually associated with p or n layers with high resistivities. The p-i-n structure is mostly used in diodes and in some types of semiconductor radiation detectors. The	Saymbetov A., Muminov R., Japashov N., Toshmurodov Y., Nurgaliyev M., Koshkarbay N., Kuttybay N., Zholamanov B., Jing Z. Physical processes during the formation of silicon-lithium p-i-n structures using double-sided diffusion and drift methods <i>Materials - Открытый доступ -</i> Том 14, Выпуск 18September 2021 DOI: 10.3390/ma14185174

uniqueness of this method is that, in this method, the processes of diffusion and drift of lithium-ions, which are the main processes in the formation of Si(Li) p-i-n structures, are produced from both flat sides of cylindricalshaped monocrystalline silicon, at optimal temperature (T = 420 °C) conditions of diffusion, and subsequently, with synchronous supply of temperature (from 55 to 100 °C) and reverse bias voltage (from 70 to 300 V) during drift of lithium-ions into silicon. Thus, shortening the manufacturing time of the detector and providing a more uniform distribution of lithiumions in the crystal volume. Since, at present, the development of manufacturing of large-sized Si(Li) detectors is hindered due to difficulties in obtaining a uniformly compensated large area and time-consuming manufacturing process, the proposed method may open up new possibilities in detector manufacturing.

89.	<u>Dual-axis</u>	DOI:	ABSTRACT	Saymbetov A., Mekhilef S., Kuttybay N.,
	<u>schedule</u>	10.1016/j.solener.2021.06.0	The efficiency	Nurgaliyev M., Tukymbekov D., Meiirkhanov A.,
	tracker with	24	of photovoltaic panels is one of	Dosymbetova G., Svanbayev Y. Dual-axis
	an adaptive	(IF= 1.337; Q1 in General	the main challenges of solar	schedule tracker with an adaptive algorithm for a
	algorithm for	Materials Science)	energy today. The sharp	strong scattering of sunbeam Solar EnergyТом
	a strong	,	decline in solar cell	224, Страницы 285 - 297August 2021
	scattering of		performance in cloudy weather	
	<u>sunbeam</u>		is the most significantlimiting	DOI: 10.1016/j.solener.2021.06.024
			factor for the transition to a	,
			green economy. As a result,	
			today's priority task is the	
			development of various	
			algorithms to improve the	
			performance of solar cells in	
			cloudy weather. This paper	
			compares the performance of	
			dual-axis schedule tracker and	
			dual-axis schedule tracker with	
			an adaptive algorithm for a	
			strong scattering of the sun's	
			rays by clouds. A comparative	
			analysis of the manufactured	
			trackersoperation in adverse	
			weather conditions was	
			performed and with the use of	
			small solar panels, an effective	
			method was proposed for	
			determining the minimum flow	
			of solar energy entering the	
			surface of photovoltaic	
			installations with strong cloud	
			scattering. The developed dual-	
			axis method of tracking the sun	

90.	Design of autonomous	DOI 10.1109/EMES52337.2021.	is 41% more efficient than the dual-axis schedule tracker. The energy produced by trackers with high-power panels for three months in the previous threeyears was also estimated using availablemeteorological data in Almaty, Kazakhstan. The results obtained can be used to design solar trackers in areas with a high probability of intensesolar energy scattering on clouds. Abstract: The paper describes the	Saymbetov A., Nurgaliyev M., Kuttybay N., Abdullozoda M., Dosymbetova G., Tukymbekov D.
	mobile PV	9484109	concept of a mobile automated	Design of autonomous mobile PV system for remote
	system for		solar power plant and given	regions 2021 16th International Conference on
	<u>remote</u>		three dimensional models. The main structural units of an	Engineering of Modern Electric Systems, EMES 2021 -
	<u>regions</u>		automated mobile power plant	Proceedings 10 June 2021 Номер статьи 948410916th International Conference on Engineering of Modern
			are shown and described. The	Electric Systems, EMES 2021 Virtual, Oradea10 June
			relevance of this work is to	2021 DOI 10.1109/EMES52337.2021.9484109
			develop a mobile source of	2021 20110.110//LM1202237.2021.7404107
			green energy for remote areas	
			in which there is no	
			uninterrupted power supply, as	
			well as a replacement for fuel	
			generators. The paper shows	
			the calculations of the power	
			parameters of the lifting mechanism, as well as the	
			algorithm of the automated	
			power plant and the electrical	

			· · · · · · · · · · · · · · · · · · ·	
			circuit of the control unit. A	
			theoretical model of a solar	
			battery based on two diodes is	
			presented and the characteristic	
			of a solar panel is shown.	
91.	<u>Optimized</u>	DOI 10.3390/en13195226	ABSTRACT	Kuttybay N., Saymbetov A., Mekhilef S., Nurgaliyev
	single-axis	(IF= 0.598; Q1 in Control	Improving the efficiency of	M., Tukymbekov D., Dosymbetova G., Meiirkhanov A.,
	<u>schedule</u>	and Optimization)	solar panels is the main task of	Svanbayev Y. Optimized single-axis schedule solar
	solar tracker		solar energy generation. One of	tracker in different weather conditions
	in different		the methods is a solar tracking	EnergiesОткрытый доступТом 13, Выпуск
	weather		system. One of the most	19October 2020 DOI 10.3390/en13195226
	conditions		important parameters of	·
			tracking systems is a precise	
			orientation to the Sun. In this	
			paper, the performance of	
			single-axis solar trackers based	
			on schedule and light	
			dependent resistor (LDR)	
			photosensors, as well as a	
			stationary photovoltaic	
			installation in various weather	
			conditions, were compared. A	
			comparative analysis of the	
			operation of a manufactured	
			schedule solar tracker and an	
			LDR solar tracker in different	
			weather conditions was	
			performed; in addition, a	
			simple method for determining	
			the rotation angle of a solar	
			tracker based on the encoder	
			was proposed. Finally, the	
			mas proposed. I many, the	

			performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.	
92.	Prediction of energy consumption for LoRa based wireless sensors network	DOI 10.1007/s11276-020- 02276-5 (IF= 0.417; Q2 in Information Systems)	Abstract This paper shows a method for predicting the lifetime of a wireless sensor network based on the LoRa Ra-01 wireless modules. To develop a prediction model of the energy consumption, wireless sensor modules were assembled and it was obtained experimental data using LabView development environment. There were performed experiments to get battery discharge curve. Experimental data of power consumption depending on the packet length were obtained in transmission mode. Using experimental data, we obtained	Nurgaliyev, M., Saymbetov, A., Yashchyshyn, Y., Kuttybay, N., Tukymbekov, D. //Prediction of energy consumption for LoRa based wireless sensors network //Wireless Networks Том 26, Выпуск 5, Страницы 3507 - 35201 July 2020 DOI 10.1007/s11276-020-02276-5

93.	Digital modeling accuracy of direct metal laser sintering process	DOI 10.18321/ectj959 (IF= 0.227; Q3 in General Chemical Engineering)	dependencies of system lifetime on sleep mode duration and packet length. The paper also considered a probabilistic approach to predict the system lifetime depending on the probability of data transmission during the day. The lifetime prediction model is based on Markov's chains. The results obtained in this work can be used to predict lifetime of sensor networks more accurately. Abstract Products obtained by metal additive manufacturing have exceptional strength properties that can be compared with forged parts, and in some cases, even surpass them. Also, the cost and time of parts manufacture are reduced by two or even three times. Because of this, today's leading corporations in the field of aerospace industry introducing this technology to its production. To avoid loss of funds and time, the processes of additive manufacturing should be predictable. Simufact Additive is specialized	Dmitriyev, T., Manakov, S. Eurasian Chemico-Technological JournalОткрытый доступТом 22, Выпуск 2, Страницы 123 — 1272020 Digital modeling accuracy of direct metal laser sintering process DOI 10.18321/ectj959
-----	---	--	--	--

software for additive manufacturing process simulation is dedicated to solving critical issues with metal 3D printing, including significantly reducing distortion; minimize residual stress to avoid failures: optimize the build-up orientation and the support structures. It also enables us to compare simulated parts with the printed sample or measure it as a reference. In other words, the simulated deformations can be estimated concerning the reference geometry. The current work aims to study the deformation of the sample during the Direct Metal Laser Sintering (DMLS) process made from Maraging Steel MS1. Simufact Additive software was used to simulate the printing process. The main idea is to compare the results of the simulation and the real model. EOS M290 metal 3D printer was used to make a test specimen.

94.	The	DOI	ABSTRACT	Shepetov A., Antonova V., Kalikulov O., Kryakunova
	prolonged	10.1016/j.atmosres.2020.10	We report the observation	O., Karashtin A., Lutsenko V., Mamina S., Mukashev
	gamma ray	5266	results of the hard radiation	K., Piscal V., Ptitsyn M., Ryabov V., Sadykov T.
	enhancement	(IF=1.488; Q1 in	flashes which accompanied the	The prolonged gamma ray enhancement and the short
	and the short	Atmospheric Science)	lightning discharges above the	radiation burst events observed in thunderstorms at Tien
	radiation	-	mountains of Northern Tien	Shan DOI 10.1016/j.atmosres.2020.105266
	burst events		Shan. Time series of the	··
	observed in		counting rate intensity,	
	thunderstorm		numerical estimations of	
	s at Tien		absolute flux, and energy	
	Shan		distribution of accelerated	
			electrons and of (20–2000)	
			keV gamma rays were obtained	
			at the height of 3700 m a. s. l.,	
			immediately within	
			thunderclouds, and in closest	
			vicinity (≲100 m) to discharge	
			region. Two different kinds of	
			radiation emission events are	
			presented here: a relatively	
			prolonged rise of gamma ray	
			intensity with minute-scale	
			duration (the thunderstorm	
			ground enhancement, TGE)	
			which has preceded a negative	
			field variation, and a short sub-	
			millisecond radiation burst,	
			which accompanied a close	
			lightning discharge in	
			thundercloud. It was revealed	
			also an indication to positron	
			generation in thunderclouds at	
			the time of gamma ray	

			emission, as well as modulation of the neutron counting rate in Tien Shan neutron monitor which was operating at a (1.5–2) km order distance from the region of lightning development.	
95.	Evolution of a Nanocrystalli ne Structure of the Cobalt Metal in Annealing	DOI 10.21272/jnep.12(6).06027 (IF= 0.225; Q3 in General Materials Science)	Abstract It is shown that the boundaries of grains formed during severe plastic deformation of cobalt are highangle, nonequilibrium, adjacent to distorted regions of the crystal lattice. These distortions are caused by the fields of elastic stresses introduced by grain boundary dislocations. The density of dislocations in the bulk of nanocrystals reaches 1010 cm2. The large length of nonequilibrium boundaries and the high density of defects play a decisive role in the formation of physical and mechanical properties and determine the low thermal stability of nanocrystalline materials: grain growth begins at relatively low temperatures during the recovery of the cobalt structure. This process	Gabdrakhmanova, L.A., Mukashev, K.M., Umarov, F.F., Muradov, A.D., Yar-Mukhamedova, G.S. Evolution of a Nanocrystalline Structure of the Cobalt Metal in Annealing Journal of Nano- and Electronic PhysicsОткрытый доступТом 12, Выпуск 6, Страницы 06027-1 - 06027-62020 DOI 10.21272/jnep.12(6).06027

		T	1 1 200	1
			develops smoothly up to 300	
			°C. A sharp change in these	
			properties occurs during	
			recrystallization at T > 300 °C	
			and then they practically do not	
			change. Above T > 400 $^{\circ}$ C, the	
			cobalt structure became	
			completely recrystallized and	
			further coarsening of grains is	
			observed. In this case, the	
			abnormal growth of perfect	
			grains occurs due to the	
			absorption of small imperfect	
			cells. As a result of the	
			redistribution and annihilation	
			of dislocations in the	
			boundaries and in the volume	
			of grains, the processes of	
			recrystallization occur	
			according to the diffusion	
			mechanism.	
96.	Intensive	DOI	Abstract	Gabdrakhmanova, L.A., Mukashev, K.M., Muradov,
	<u>plastic</u>	10.21272/jnep.12(1).01010	The choice of cobalt as an	A.D., Umarov, F.F., Yar-Mukhamedova, G.S. Journal
	deformation	(IF = 0.225; Q3 in General)	object of study is due to the	of Nano- and Electronic Physics, 2020, (1), 01010
	influence on	Materials Science)	fact that it is characterized by a	Intensive plastic deformation influence on phase
	phase		low temperature of	relations of cobalt nanocrystals DOI
	relations of		polymorphic transformation.	10.21272/jnep.12(1).01010
	<u>cobalt</u>		This makes it possible to use it	
	nanocrystals		as a model material for	
			studying the effect of	
			crystallite sizes on the nature of	
			these transitions and phase	
			composition. Nanostructured	

samples of cobalt were obtained by the method of intense plastic deformation by torsion. High quasi-hydrostatic pressure in the working area up to 8 GPa was created on a Bridgman anvil-type installation. Anvils were made of tungsten carbide. The method allows to obtain samples of high purity without pores and impurities. Xray diffraction studies were carried out on a DRON-7 diffractometer with cobalt radiation. X-ray analysis was performed according to the Bragg-Brentano method. To conduct phase analysis, Kα lines were used at a scan step of 0.04 degrees, and when analyzing the profile of diffraction lines and determining their width – at 0.01 degrees. The absolute error in measuring the angular positions of diffraction maxima did not exceed \pm 0.020. The size of cobalt nanocrystallites reached about 25-50 nm. It is established that during lowtemperature annealing recovery occurs in the structure

			of cobalt. Annealing above 300	
			°C leads to the recrystallization	
			of its structure. The	
			nanocrystalline cobalt obtained	
			by intense plastic torsion	
			deformation after heating	
			above the phase transition	
			temperature and cooling below	
			this temperature retains the	
			hightemperature fcc structure.	
			It is shown that the nature of	
			the fcc-hcp transition delay can	
			be associated with changes in	
			the size and strained state of	
			crystallites forming	
			nanocrystalline cobalt. All of	
			the above confirms the	
			relevance of our research.	
97.	Measurement	DOI 10.1140/epjp/s13360-	Abstract	Shepetov A., Chubenko A., Iskhakov B.
	s of the low-	019-00092-1	Purposeful investigation of	,Kryakunova O. ,Kalikulov O. ,Mamina S.
	<u>energy</u>	(IF= 0.650; Q1 in General	radiation fluxes strongly	,Mukashev K., Piscal V., Ryabov V., Saduyev N.
	neutron and	Physics and Astronomy)	delayed in relation to the main	,Sadykov T. ,Salikhov N. Measurements of the
	gamma ray		particles front of extensive air	low-energy neutron and gamma ray accompaniment
	<u>accompanime</u>		shower (EAS) was undertaken	of extensive air showers in the knee region
	nt of		at the Tien Shan Mountain	of primary cosmic ray spectrum European
	extensive air		Cosmic Ray Station. It was	Physical Journal PlusОткрытый доступТом 135,
	showers		found that the passage of the	Выпуск 11 January 2020
	in the knee		EAS can be accompanied by	
	<u>region</u>		the delayed thermal neutrons	DOI 10.1140/epjp/s13360-019-00092-1
	of primary		and by the soft (30–50) keV	
	cosmic ray		gamma rays, mostly	
	<u>spectrum</u>		concentrated within a region of	
			about (5–10) m around shower	

axis, where the integral radiation fluence can vary in the limits of (10-4-1) cm-2for neutrons, and of (0.1 -1000) cm-2 for gamma rays. The dependence of signal multiplicity on the shower size Ne has a power shape both for the neutron and gamma ray components, with a sharp increase of its power index around the value of Ne ≈ 106 , which corresponds to the position of the 3 · 1015 eV knee in the primary cosmic ray spectrum. Total duration of detectable radiation signal after the EAS passage can be of some tens of milliseconds in the case of neutron component, and up to a few whole seconds for gamma rays. The delayed accompaniment of low-energy radiation particles can be an effective probe to study the interaction of the hadronic component of EAS. Кафедра физики плазмы, нанотехнологии и компьютерной физики

98.	Dust-	DOI	The dispersion of dust-acoustic	Davletov, A., Kurbanov, F., Mukhametkarimov, Y.,
70.	Acoustic	10.1109/TPS.2021.3078344	waves (DAWs) in weakly and	Yerimbetova, L. Dust-Acoustic Wave Dispersion in
	Wave	(IF=2.4; Q2 in IEEE	moderately coupled thermal	Thermal Dusty Plasmas at Weak and Moderate
	Dispersion in	Transactions on Plasma	dusty plasmas is studied in the	Couplings (2021) IEEE Transactions on Plasma
	Thermal	Science)	framework of the linear	Science, 49 (6), статья № 9439058, pp. 2000-2007.
	Dusty	Belefice)	density-response formalism	DOI: 10.1109/TPS.2021.3078344
	Plasmas at		with the static local-field	DOI: 10.1109/115.2021.3070311
	Weak and		correction for interdust	
	Moderate		interactions. The plasma	
	Couplings		medium composition and the	
	Couplings		charge of dust particles are	
			simultaneously determined	
			within a recently developed	
			chemical model (Physical	
			Review E, vol. 101, 063203,	
			2020) based on minimizing the	
			Helmholtz free energy of the	
			system under investigation.	
			Stemming from the generalized	
			Poisson-Boltzmann equation,	
			the renormalization procedure	
			is consistently applied to derive	
			an interdust screened potential	
			that takes into account the	
			finiteness of dust grains.	
			Within the framework of the	
			Ornstein-Zernike relationship	
			in the hypernetted chain	
			approximation, the static	
			structure factor of the dust	
			component is evaluated to	
			manifest the appearance of	
			local extrema on its	

_

99.	Performance	DOI10.1016/j.solener.202	A numerical simulation method	Shalenov, E.O., Dzhumagulova, K.N., Ng, A.,
)).	optimization	0.05.034 (IF=8.9 ;Q1 in	is used to investigate intricacies	Jumabekov, A.N.
	of back-	Solar Energy)	of a complex relation between	Performance optimization of back-contact perovskite
	contact	Bolai Elicigy)	the back-contact electrode	solar cells with quasi-interdigitated electrodes
	perovskite		(BCE) geometric parameters, the	(2020) Solar Energy, 205, pp. 102-108. Цитировано 4
	solar cells		perovskite photo-absorber layer	раз.DOI: 10.1016/j.solener.2020.05.034
	with quasi-		electronic properties, and device	pas.DOI: 10.1010/j.solelle1.2020.05.054
	_		1 1	
	interdigitated electrodes		performance in back-contact	
	electrodes		perovskite solar cells (BC-PSCs)	
			with quasi-interdigitated	
			electrodes (QIDEs). To unlock	
			the full potential of BC-PSC	
			with QIDEs, the device	
			performance was investigated by	
			systematically varying the	
			geometric parameters of BCE	
			and the perovskite photo-	
			absorber layer electronic	
			parameters in order to determine	
			the conditions for a best device	
			performance. BC-PSC with	
			QIDEs have a potential to	
			produce power conversion	
			efficiencies (PCEs) higher than	
			PSCs with the conventional	
			sandwich architecture if	
			optimized parameters for	
			electrode geometry and	
			perovskite electronic properties	
			are used. The findings of the	
			present work give an insight into	
			the work principle of these	
			devices and provide a theoretical	

			guidance for design and fabrication of high-performance BC-PSC with QIDEs. © 2020 International Solar Energy Society	
100.	The pulse vacuum-arc plasma generator for nanoengineer ing application	DOI10.1007/s00339-020- 03922-7 (IF=3.5 ;Q2 in Applied Physics A: Materials Science and Processing)	In paper described the results of work on the application of vacuum-arc machine in nanoengineering area. Researches were carried out to optimize the operation of this machine for the synthesis of nanomaterials in low-pressure arc-discharge plasma, plasma diagnosis and production of nanopowders. An electrode system based on the grounded cathode with impulse ignition has been developed. The anode current was measured and the mass output of the product was calculated. Experimental data on energy density were obtained, confirming the presence of plasma focusing on the electrode	Zhukeshov, A.M., Gabdullina, A.T., Amrenova, A.U., Fermakhan, K. The pulse vacuum-arc plasma generator for nanoengineering application (2020) Applied Physics A: Materials Science and Processing, 126 (9), статья № 742, .DOI: 10.1007/s00339-020-03922-7

101.	Pulsed vacuum arc plasma deposition of films and particles at different pressures and temperatures	DOI10.1615/HighTempM atProc.2020034924 (IF=1.1 ;Q3 in High Temperature Material Processes)	system axis due to its own magnetic field, the focus value of which reaches about 18 kJ/m2. Powder samples were also obtained in the form of clusters containing the copper particles (up to 98%) and spherical powder with size from 116 nm to 1.2 µm. Homogeneity and dispersion of powder depended on the time of the processes accompanying the deposition. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature. The conditions of powder and film deposition at different pressures in the working chamber and the influence of substrate temperature in using of vacuum arc discharge are investigated. The experi-ments were carried out on a VAS-1 vacuum arc sprayer with known parameters of discharge circuit. The optimal pressure regime for deposition of thin films of nanoscale thickness was 10–3 mbar or below. The calculated estimation time for film	Amrenova, A.U., Zhukeshov, A.M., Ibraev, B.M., Gabdullina, A.T., Useinov, B.M., Mukhamedryskyzy, M., Fermakhan, K. Pulsed vacuum arc plasma deposition of films and particles at different pressures and temperatures (2020) High Temperature Material Processes, 24 (2), pp. 157-165. Цитирован(ы) 1 раз.
			nanoscale thickness was 10–3 mbar or below. The calculated	

	10–4 mbar was observed. When	
	a plasma was produced on a cold	
	substrate, a continuous film was	
	not observed. The optimal	
	pressure for pro-ducing	
	nanopowders was equal to 10–2	
	mbar; particle agglomeration	
	and the formation of a fractal	
	structure were observed at this	
	pressure. Individual spherical	
	particles with a size of 100–600	
	nm were deposited at a pressure	
	of 10–3 mbar. In their	
	composition, elements of a	
	substrate and elec-trode	
	materials were found. The	
	recommendations for choosing	
	optimal modes to obtain	
	nanosize coatings by the vacuum	
	arc method and technological	
	conditions for obtaining	
	nanopowders using the pulse	
	installation for industrial	
	application was given. © 2020	
	by Begell House, Inc.	

102.	[International	DOI10.31992/0869-3617-	The formation of a modern	Shageeva, F.T., Mishchenko, E.S., Chernyshov, N.G.,
102.	ENTER	2020-6-65-74 (IF=1.4 ;Q2	generation of engineers capable	Nurgalieva, K.E., Turekhanova, K.M., Omirzhanov,
		in Vysshee Obrazovanie v	to drive changes that meet the	Y.T. International ENTER project: A new pedagogical
	project: A	1		
	new	Rossii)	requirements of the future	training approach for engineering educators
	pedagogical		necessitates a new approach in	
	training		pedagogical training of	
	approach for		engineering teachers. The	
	engineering		international ENTER	
	educators]		(EngineeriNg educaTors	
			pEdagogical tRaining) project is	
			being developed as part of EU	
			Erasmus program focused on	
			addressing the actual education	
			needs from the standpoint of	
			human and social capitals	
			development both in Europe and	
			in other countries. The ENTER	
			project is aimed at the creation	
			and development of an	
			international platform for	
			multilevel vocational	
			training/retraining of technical	
			universities teachers on the basis	
			of the Eurasian interaction	
			network. Surveys among	
			employers, teachers, and	
			engineering university students,	
			as well as scientific periodicals	
			analysis allowed us to determine	
			the complex of universal and	
			specific engineering and	
			pedagogical competencies that	
			educators should master not only	

			for today, but also for the future needs. Based on the competency analysis, a three-level modular teacher training/retraining program (iPET program) has been developed and its international accreditation is planned. © 2020 Moscow Polytechnic University. All rights reserved.	
103.	Molecular dynamics investigation of soliton propagation in a two- dimensional Yukawa liquid	DOI10.1002/ctpp.2019001 97 (IF=2.1;Q3 in Contributions to Plasma Physics)	We investigate via molecular dynamics simulations the propagation of solitons in a two-dimensional many-body system characterized by Yukawa interaction potential. The solitons are created in an equilibrated system by the application of electric field pulses. Such pulses generate pairs of solitons, which are characterized by a positive and negative density peak, respectively, and which propagate into opposite directions. At small perturbation, the features propagate with the longitudinal sound speed, from	Donkó, Z., Hartmann, P., Masheyeva, R.U., Dzhumagulova, K.N. Molecular dynamics investigation of soliton propagation in a two-dimensional Yukawa liquid (2020) Contributions to Plasma Physics, 60 (8), статья № e201900197, DOI: 10.1002/ctpp.201900197

which an increasing deviation is	
found at higher density	
perturbations. An external	
magnetic field is found to block	
the propagation of the solitons,	
which can, however, be released	
upon the termination of the	
magnetic field and can	
propagate further into directions	
that depend on the time of	
trapping and the magnetic field	
strength. © 2020 WILEY-VCH	
Verlag GmbH & Co. KGaA,	
Weinheim	
104. Dynamic DOI10.1103/PhysRevE.10 The dynamic structure factor Arkhipov,	Y.V., Ashikbayeva, A., Askaruly, A.,
characteristic 2.053215(IF=4.3;Q1 in and other dynamic Davletov, A.	E., Dubovtsev, D.Y., Santybayev, K.S.,
s of three- Physical Review E) characteristics of strongly Syzganbaye	eva, S.A., Conde, L., Tkachenko, I.M.
dimensional coupled one-component plasmas Dynamic char	racteristics of three-dimensional strongly
	mas (2020) Physical Review E, 102 (5),
	215,DOI: 10.1103/PhysRevE.102.053215
plasmas 045001 (2017)PRLTAO0031-	•
900710.1103/PhysRevLett.119.0	
45001] using the self-consistent	
version of the method of	
moments. Within any version of	
the latter, the system dielectric	
function satisfies all involved	
sum rules and other exact	
relations automatically, and the	
advantage of this version is that,	
in addition, the dynamic	
characteristics (the dynamic	
structure factor, the dispersion,	

			and decay parameters of the	
			collective modes) are all	
			expressed in terms of the static	
			ones (the static structure factor)	
			without any adjustment to the	
			simulation data. The approach	
			outlined in the aforementioned	
			Letter is justified in detail and	
			applied mainly to the classical	
			Coulomb systems achieving	
			satisfactory agreement with new	
			numerical simulation data. It is	
			shown how the realm of	
			applicability of the method can	
			be extended to partly degenerate	
			and multicomponent systems,	
			even to simple liquids. Some	
			additional theoretical results are	
			presented in the Supplemental	
			Material. © 2020 American	
			Physical Society.	
105.	Optical	DOI10.1134/S1063780X2	Abstract—: The results of	Arkhipov, Y.V., Dubovtsev, D.Y., Syzganbayeva, S.A.,
	Properties of	0010018 (IF=1.8 ;Q3 in	studies of optical properties of	Tkachenko, I.M. Optical Properties of Dense Plasmas
	Dense	Plasma Physics Reports)	plasmas in the framework of the	(2020) Plasma Physics Reports, 46 (1), pp. 71-76 DOI:
	Plasmas	•	self-consistent method of	10.1134/S1063780X20010018
			moments, which are in	
			satisfactory agreement with	
			experimental data, are presented.	
			The proposed calculation	
			method differs from other	
			theoretical approaches in the	
			absence of fitting parameters	
			and requires only knowledge of	

			partial static structural plasma factors for calculations. The results were obtained in a wide range of the system parameters. © 2020, Pleiades Publishing, Ltd.	
106.	Generation and Diagnostics of Pulse Plasma Flows	DOI10.1134/S1063780X2 0040121 (IF=1.8 ;Q3 in Plasma Physics Reports)	Abstract: Pulsed plasma accelerators are widely used for the production of high-temperature pulsed plasma flows for fundamental and practical applications. The basic parameters of pulsed plasma accelerators are the characteristics of the external electric and magnetic circuits, as well as the structural and energy properties of the plasma flow. This work aims to characterize an IPU-30 pulsed plasma accelerator. The triple Langmuir probe method, calorimetric plasma energy density measurements, Rogowski coil, and high-speed visible imaging with a Phantom VEO710S fast camera are used to diagnose the pulsed plasma obtained in the IPU-30. The local plasma parameters such as electron temperature and density, the energy density of the pulsed	Tazhen, A.B., Rayimkhanov, Z.R., Dosbolayev, M.K., Ramazanov, T.S. Generation and Diagnostics of Pulse Plasma Flows (2020) Plasma Physics Reports, 46 (4), pp. 465-471. DOI: 10.1134/S1063780X20040121

	1		T	
			plasma flow, pulsed plasma	
			current, and also discharge	
			current are experimentally	
			obtained at different discharge	
			voltages and air pressure in the	
			chamber. The typical waveforms	
			of the triple probe and Rogowski	
			coil are presented in the form of	
			oscillograms. The images of	
			plasma formation in the	
			discharge gap are obtained and	
			the velocity of a pulsed plasma	
			flow is measured. © 2020,	
			Pleiades Publishing, Ltd.	
107.	Destruction	DOI10.35848/1347-	Dusty white dwarfs are natural	Kenzhebekova, A.I., Bastykova, N.K., Kodanova, S.K.,
	of a dust	4065/ab7697 (IF=2.7;Q2	objects for studying the	Ramazanov, T.S., Maiorov, S.A., Moldabekov, Z.A.
	particle in the	in Japanese Journal of	properties of cosmic dusty	Destruction of a dust particle in the white dwarf
	white dwarf	Applied Physics, Part 1:	plasmas. We present the results	atmosphere (2020) Japanese Journal of Applied
	atmosphere	Regular Papers & Short	of computation of the charge,	Physics, 59 (SH), статья № SHHA04, DOI:
		Notes)	radius, and temperature of a	10.35848/1347-4065/ab7697
			carbon dust particle in the	
			atmosphere of dusty white dwarf	
			G29-38, which is a typical	
			example of a dusty white dwarf.	
			The calculation results show that	
			dust particles life-time in the	
			atmospheres of dusty white	
			dwarfs is of the order of	
			microsecond. Therefore, dust	
			particles cannot be sustained in a	
			typical white dwarf atmosphere.	
			© 2020 The Japan Society of	
			Applied Physics.	

108.	Collision	DOI10.1063/5.0004163(IF	The collision of a polarizable	Bastykova, N.K., Moldabekov, Z.A., Kodanova, S.K.,
	between a	=3.9 ;Q2 in Physics of	neutral particle with a charged	Ramazanov, T.S.
	charged	Plasmas)	particle in plasmas is studied.	Collision between a charged particle and a polarizable
	particle and a	,	The neutral particle interaction	neutral particle in plasmas
	polarizable		with a charged particle is	(2020) Physics of Plasmas, 27 (4), статья № 044502, .
	neutral		considered to be due to an	DOI: 10.1063/5.0004163
	particle in		induced dipole moment. Taking	
	plasmas		into account screening and a	·
	pasmas		finite size of colliding particles,	
			we present accurate and simple	
			interpolation formulas for the	
			total scattering cross section in	
			the case of contact of the neutral	
			particle with the dust particle	
			surface. The results are obtained	
			for both weak and strong	
			coupling between colliding	
			particles. © 2020 Author(s).	
109.	[Investigation	(IF=0.3 ;Q4 in Applied	In this work the evolution of	Bastykova, N.Kh., Golyatina, R.I., Kodanova, S.K.,
	of the	Physics)	dust particles from various	Ramazanov, T.S., Maiorov, S.A. Investigation of the
	evolution of	,	materials used in fusion power	evolution of Be, Ni, Mo and W dust particles in fusion
	Be, Ni, Mo		devices is investigated. A model	plasma [Article@Исследование эволюции пылинок
	and W dust		for describing dust formation is	из Ве, Ni, Mo и W в термоядерном реакторе] (2020)
	particles in		constructed, and estimates of the	Applied Physics, (3), pp. 21-26.
	fusion		dust lifetimes in the edge fusion	
	plasma]		plasma are obtained. The model	
			is taken into account	
			thermochemical, electrical and	
			other properties of materials. It	
			is shown that the dominant	
			process of reducing the dust	
			mass is thermal evaporation,	
			which depends on the pressure	

			of saturated vapor at a	
			temperature of thermal	
			equilibrium. Estimates of the	
			dust lifetime from different	
			materials depending on the	
			plasma parameters are obtained.	
			The presented results can be	
			useful for estimating the length	
			of the dust penetration into the	
			depth of the fusion reactor. The	
			difference in the dynamics of	
			particles from light and heavy	
			elements is shown. Of the four	
			elements examined (Be, Ni, Mo,	
			and W), nickel exhibits the	
			highest mobility due to its long	
			life and moderate weight. ©	
			2020 Federal Informational-	
			Analytical Center of the Defense	
			Industry. All rights reserved.	
110.	Surface	DOI10.1134/S1547477120	Abstract: Surface waves	Baiseitov, K., Moldabekov, Z.A., Blaschke, D.,
	Waves in a	060035(IF=1.1 ;Q3 in	propagating in the semi-bounded	Djienbekov, N., Ramazanov, T.S. Surface Waves in a
	Collisional	Physics of Particles and	collisional hot QCD medium	Collisional Quark-Gluon Plasma (2020) Physics of
	Quark-Gluon	Nuclei Letters)	(quark-gluon plasma) are	Particles and Nuclei Letters, 17 (6), pp. 803-808. DOI:
	Plasma		considered. To investigate the	10.1134/S1547477120060035
			effect of collisions as damping	
			and non-ideality factor, the	
			longitudinal and transverse	
			dielectric functions of the quark-	
			gluon plasma are used within the	
			Bhatnagar–Gross–Krook (BGK)	
			approach. The results were	
			obtained both analytically and	

numerically in the long	
wavelength limit. First of all,	
collisions lead to smaller values	
of surface wave frequency and	
their stronger damping.	
Secondly, the results show that	
non-ideality leads to the	
appearance of a new branch of	
surface waves compared to the	
collisionless case. The relevance	
of the surface excitations	
(waves) for the QGP realized in	
experiments is discussed. ©	
2020, Pleiades Publishing, Ltd.	

111.	Melting,	DOI10.1103/PhysRevE.10	This paper reports on the	Aldakul, Y.K., Moldabekov, Z.A., Ramazanov, T.S.
	freezing, and	2.033205(IF=4.3 ;Q1 in	molecular dynamics simulations	Melting, freezing, and dynamics of two-dimensional
	dynamics of	Physical Review E)	of classical two-dimensional	dipole systems in screening bulk media (2020) Physical
	two-	,	(2D) electric dipole systems.	Review E, 102 (3), статья № 033205, DOI:
	dimensional		The properties of 2D systems	10.1103/PhysRevE.102.033205
	dipole		with bare (nonscreened) and	
	systems in		screened dipole-dipole	
	screening		interactions have been	
	bulk media		investigated. Based on the	
			polygon construction method,	
			we present simulation results on	
			the phase transition, and we	
			locate the melting and freezing	
			points of 2D dipole systems in	
			terms of a polygon disorder	
			parameter, with the polygon	
			disorder parameter being the	
			sum of nontriangular polygon	
			order parameters. It was found	
			that the phase transition of the	
			system occurs when the polygon	
			disorder parameter has a value	
			0.165. This result was cross-	
			checked by using both local and	
			overall orientational order	
			parameters. We also identified	
			that the value of the average	
			local orientational order	
			parameter at the phase transition	
			point is 0.67. These results are	
			valid for the ordinary (bare)	
			dipole-dipole interaction as well	
			as the screened dipole-dipole	

112.	Synthesis of	DOI10.1016/j.apsusc.2020	This work is devoted to the	Yerlanuly, Y., Christy, D., Van Nong, N., Kondo, H.,
	carbon	.146533 (IF=10.7 ;Q1 in	synthesis of carbon nanowalls	Alpysbayeva, B., Nemkayeva, R., Kadyr, M.,
	nanowalls on	Applied Surface Science)	on the surface of a nanoporous	Ramazanov, T., Gabdullin, M., Batryshev, D., Hori, M.
	the surface of		aluminum oxide membrane by	Synthesis of carbon nanowalls on the surface of
	nanoporous		radical-injection plasma	nanoporous alumina membranes by RI-PECVD method
	alumina		enhanced chemical vapor	(2020) Applied Surface Science, 523, статья №
	membranes		deposition method. Nanoporous	146533,DOI: 10.1016/j.apsusc.2020.146533
	by RI-		alumina oxide membranes with	
	PECVD		different morphology and	
	method		thickness, which were obtained	
			by the method of two-stage	
			electrochemical anodization,	
			were used as a substrate. For	
			comparative analysis, carbon	
			nanowalls were also obtained on	
			the surface of a silicon substrate	
			and aluminum foil. The	
			synthesized nanostructures were	
			investigated by using scanning	
			electron microscopy and Raman	
			spectroscopy. The dependence	
			of the morphology and height of	
			carbon nanowalls on the pore	
			size and the thickness of the	
			alumina membrane,	
			respectively, was revealed. ©	
			2020 Elsevier B.V.	

113.	Electron	DOI10.1016/j.hedp.2020.1	The phenomenon of electron	Jumagulov, M.N., Seisembayeva, M.M., Shalenov,
	runaway in a	00832 (IF=1.9	runaway in a dense semiclassical	E.O., Kossymkyzy, Z., Ramazanov, T.S.,
	dense	;Q2 in High Energy	plasma was investigated on the	Dzhumagulova, K.N. Electron runaway in a dense
	semiclassical	Density Physics)	basis of the effective potentials	semiclassical plasma (2020) High Energy Density
	plasma	Density Thysics)	of particle interactions. These	Physics, 36, статья № 100832, DOI:
	plasma		effective potentials take into	10.1016/j.hedp.2020.100832
			account the quantum-mechanical	10.1010/J.neup.2020.100032
			effect of diffraction and static or	·
			dynamic screening. The results	
			of numerical calculations of the	
			effective collision frequency,	
			mean free path and friction force	
			for various values of the density	
			parameter and coupling	
			parameter and coupling parameter are presented. It is	
			shown that the dynamic	
			screening led to an increase in	
			the friction force. © 2020	
114.	Thermodyna	DOI10.1142/S0217732320	We consider thermodynamic	Dzhunushaliev, V., Folomeev, V., Ramazanov, T.,
114.	mics and	501941(IF=2.7	properties of a quark-gluon	Kozhamkulov, T. Thermodynamics and statistical
	statistical	;Q2 in Modern Physics	plasma related to quasiparticles	physics of quasiparticles within the quark-gluon plasma
	physics of	Letters A)	having the internal structure. For	model (2020) Modern Physics Letters A, 35 (23),
	quasiparticles	Letters 11)	this purpose, we employ a	статья № 2050194, DOI:
	within the		possible analogy between	10.1142/S0217732320501941.
	quark-gluon		quantum chromodynamics and	10.11 12/3021//32320301711.
	plasma model		non-Abelian Proca-Dirac-Higgs	
	plasma moder		theory. The influence of	
			characteristic sizes of the	
			quasiparticles on such	
			thermodynamic properties of the	
			quark-gluon plasma like the internal energy and pressure is studied. Sizes of the	

quasiparticles are to	aken into
account in the spirit	of the van
der Waals equation b	out we take
into consideration	that the
quasiparticles have	different
sizes, and the average	
these sizes deper	
temperature. It is sho	
results in a change in	
energy and pressu	
quark-gluon plasma	
show that, when the t	=
increases, the averag	
characteristic size	es of the
quasiparticles increas	ses as well.
This leads to the occu	urrence of a
phase transition	at the
temperature at which	
occupied by the quasi	
compared with the	
occupied by the plasm	
World Scientific Po	
Company.	

115.	Model for	DOI10.1134/S2070048220	Abstract: In the present work, a	Dzhumagulova, K.N., Ramazanov, T.S., Masheyeva,
	Investigating	040079 (IF=1.5	numerical modified Verlet	R.U., Jumagulov, M.N. Model for Investigating the
	the Physical	;Q3 in Mathematical	scheme (MVS) is obtained. This	Physical Properties of a System of Charged Particles
	Properties of	Models and Computer	scheme is intended to solve the	Taking into Account the External Magnetic Field and
	a System of	Simulations)	equations of motion of charged	Friction Force (2020) Mathematical Models and
	Charged	2111011010101	particles immersed in an	Computer Simulations, 12 (4), pp. 528-535.DOI:
	Particles		external stationary environment	10.1134/S2070048220040079
	Taking into		and a uniform magnetic field,	10.112 1/20/00 102200 100/
	Account the		for example, charged particles of	
	External		a condensed substance in a	
	Magnetic		buffer plasma (dusty plasma).	
	Field and		The influence of the	
	Friction		environment on the particle	
	Force		dynamics is described by the	
			friction force. The particle	
			dynamics are also affected by	
			interparticle interaction and an	
			external uniform magnetic field.	
			To obtain the Verlet scheme	
			(VS), the coordinates and	
			velocities of the particles are	
			decomposed into a Taylor series,	
			taking into account the Lorentz	
			force and the friction force. All	
			Taylor series expansion terms	
			that give the same order of	
			accuracy are taken into account.	
			In the obtained numerical	
			scheme, the time step of	
			modeling does not depend on the	
			magnitude of the magnetic field	
			but is determined only by the	
			internal physical properties of	

			T.	
			the system under consideration,	
			which is important when	
			modeling an ensemble of	
			charged particles taking	
			electromagnetic fields into	
			account. The paper solves a test	
			problem for which particle	
			trajectories obtained based on	
			the conventional and modified	
			VS for different values, both the	
			friction parameter and the	
			magnetic field parameter, are	
			compared. Based on the analysis	
			of the dependence of the	
			maximum relative deviation of	
			the coordinate on the time step,	
			the time step is independent of	
			the magnetic field in the Taylor	
			expansion scheme, while in the	
			inverse VS it is dependent. ©	
			2020, Pleiades Publishing, Ltd.	
116.	Non-Abelian	DOI10.1088/1402-	We consider non-Abelian Proca	Dzhunushaliev, V., Dzhunushaliev, V., Dzhunushaliev,
	Proca	4896/ab9791 (IF=2.3	theories with extra fundamental	V., Folomeev, V., Folomeev, V., Folomeev, V.,
	theories with	;Q2 in Physica Scripta)	fields included. In the case of	Kozhamkulov, T., Makhmudov, A., Ramazanov, T.
	extra fields:	1 /	SU(2) Proca theory with	Non-Abelian Proca theories with extra fields:
	Particlelike		nonlinear scalar and spinor	Particlelike and flux tube solutions (2020) Physica
	and flux tube		fields, we obtain spherically	Scripta, 95 (7), статья № 074013,DOI: 10.1088/1402-
	solutions		symmetric regular solutions	4896/ab9791
			describing particlelike	
			configurations with finite	
			energy. For such systems, we	
			find the energy spectrum and	
			show the presence of a mass	

			gap. In the case of SU(3) Proca	
			theory with a nonlinear scalar	
			field, we obtain cylindrically	
			1	
			symmetric solutions describing	
			tubes either with the flux of a	
			longitudinal electric field or with	
			the energy flux or with both of	
			them. It is shown that the tubes	
			with the energy flux may	
			contribute considerably to the	
			Proca proton spin. Consistent	
			with all of this, we have argued	
			that non-Abelian Proca theories	
			containing extra fields may	
			approximately describe some	
			phenomena in QCD. © 2020	
			IOP Publishing Ltd.	
117.	Superhydrop	DOI10.1016/j.apsusc.2020	The paper presents the results of	Orazbayev, S., Zhumadilov, R., Zhunisbekov, A.,
	hobic	.146050(IF=10.7	a complex study of	Gabdullin, M., Yerlanuly, Y., Utegenov, A.,
	carbonous	;Q1 in Applied Surface	superhydrophobic surfaces	Ramazanov, T. Superhydrophobic carbonous surfaces
	surfaces	Science)	obtained by PECVD methods in	production by PECVD methods (2020) Applied Surface
	production by		RF discharge plasma with gas	Science, 515, статья № 146050,DOI:
	PECVD		mixtures (Ar/CH4 and	10.1016/j.apsusc.2020.146050
	methods		Ar/C2H2) and by plasma jet	
			(Ar/CH4). In both experiments	
			hydrophobic surfaces were	
			obtained by deposition of carbon	
			nanoparticles on glass and	
			silicon substrates by plasma of	
			Ar (93%) + CH4 (7%) and Ar	
			(93%) + C2H2 (7%) gas	
			mixtures. To compare surfaces	
			with high hydrophobicity	
			with high hydrophobicity	

		T		
			produced by the above two	
			methods their contact angles	
			were studied. The dependence of	
			changes in the contact angle on	
			the storage time of the samples	
			under normal conditions show	
			that samples obtained in Ar/CH4	
			plasma and plasma jet at	
			atmospheric pressure are much	
			better preserved. © 2020	
118.	Ion energy-	DOI10.1103/PhysRevE.10	We investigate the energy-loss	Moldabekov, Z.A., Dornheim, T., Bonitz, M.,
	loss	1.053203(IF=4.3 ;Q1 in	characteristics of an ion in warm	Ramazanov, T.S. Ion energy-loss characteristics and
	characteristic	Physical Review E)	dense matter (WDM) and dense	friction in a free-electron gas at warm dense matter and
	s and friction		plasmas concentrating on the	nonideal dense plasma conditions (2020) Physical
	in a free-		influence of electronic	Review E, 101 (5), статья № 053203, DOI:
	electron gas		correlations. The basis for our	10.1103/PhysRevE.101.053203.
	at warm		analysis is a recently developed	-
	dense matter		ab initio quantum Monte Carlo-	
	and nonideal		(QMC) based machine learning	
	dense plasma		representation of the static local	
	conditions		field correction (LFC)	
			[Dornheim, J. Chem. Phys. 151,	
			194104 (2019)JCPSA60021-	
			960610.1063/1.5123013], which	
			provides an accurate description	
			of the dynamical density	
			response function of the electron	
			gas at the considered parameters.	
			We focus on the polarization-	
			induced stopping power due to	
			free electrons, the friction	
			function, and the straggling rate.	
			In addition, we compute the	

friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of $\gamma/\omega pi=0.01$, where ωpi is the ionic plasma frequency. This analysis is performed by comparing QMCbased data to results from the random-phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land-Sjölander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss of ions in a correlated partially degenerate electrons gas. Moreover, by comparing QMCbased data with the results obtained using STLS, we find that the ion energy-loss properties are not sensitive to the inaccuracy of the static local field correction (LFC) at large wave numbers, k/kF>2 (with kF

			being the Fermi wave number), but that a correct description of the static LFC at k/kF1.5 is important. © 2020 American Physical Society.	
119.	Particle formation during deposition of SiO x nanostructure d thin films by atmospheric pressure plasma jet	DOI10.35848/1347- 4065/ab72ca (IF=2.7;Q2 in Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes)	In this work, the results of SiO x thin film deposition by an atmospheric pressure plasma jet using HMDSO (hexamethyldisiloxane) as precursor are presented. The experiments were performed for different process parameters like initial applied power, substrate to nozzle distance and speed of the moving substrate holder. In order to determine the properties of deposited films the samples were analyzed by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and profilometer. The formation mechanism of particles and their size distribution depending on the process parameters are described and discussed. The results show the possibility to change properties of deposited films and particle formation by tuning the experimental settings. © 2020	Ussenov, Y.A., Hansen, L., Krüger, T., Ramazanov, T.S., Kersten, H. Particle formation during deposition of SiO x nanostructured thin films by atmospheric pressure plasma jet (2020) Japanese Journal of Applied Physics, 59 (SH), статья № SHHE06,DOI: 10.35848/1347-4065/ab72ca

		The Japan Society of Applied Physics.	
of partic	ffusion dust cles in ogenic smas The state of the state	Neutral shadowing force, which becomes comparable with a screened Coulomb force at extreme cryogenic conditions, can significantly change the properties of complex plasmas. In this work, the impact of neutral shadowing force on the mean square displacement (MSD) of dust particles is investigated. This is done by performing Langevin dynamics simulations of a 2D system of strongly correlated particles. The results of this work show that the additional force due to the neutral shadowing effect has a strong impact on MSD, i.e. the diffusive motion of particles, only if the mean free path of neutral gas particles exceeds the mean inter-dust-particle distance. In the latter case, we find that neutral shadowing force leads to subdiffusion on time scales of the order of tens or hundreds of dust particle plasma oscillation periods. Furthermore, we find that	Aldakulov, Y.Q., Moldabekov, Z.A., Muratov, M., Ramazanov, T.S. Subdiffusion of dust particles in cryogenic plasmas (2020) Japanese Journal of Applied Physics, 59 (SH), статья № SHHE02,DOI: 10.7567/1347-4065/ab6565.

			neutral shadowing force can strongly hinder the transition from anomalous diffusion to normal diffusion. © 2020 The Japan Society of Applied Physics.	
121.	Dense plasmas with partially degenerate semiclassical ions: Screening and structural properties	DOI10.35848/1347- 4065/ab75b5(IF=2.7;Q2 in Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes	The screened interaction potential between ions taking into account the wave nature of ions is presented. The parameters considered in this paper correspond to those of dense plasmas with ideal or weakly coupled quantum electrons and semiclassical nonideal ions. The wave nature of ions is described using the concept of quantum potentials. The obtained effective interaction potential between ions takes into account screening by electrons and ionic quantum nonlocality. It is shown that the polarization of electrons around an ion leads to a decrease in the ion's effective thermal wavelength and, conversely, screening of the ion field by electrons becomes weaker due to the wave nature of the ion. Furthermore, on the basis of the derived ion-ion interaction	Ismagambetova, T.N., Moldabekov, Z.A., Amirov, S.M., Ramazanov, T.S., Gabdullin, M.T., Temirbek, A., Tikhonov, A. Dense plasmas with partially degenerate semiclassical ions: Screening and structural properties (2020) Japanese Journal of Applied Physics, 59, статья № SHHA10, DOI: 10.35848/1347-4065/ab75b5.

			potential, we investigate the structural properties of semiclassical non-ideal ions. For hydrogen plasmas, the ionic quantum nonlocality effect is significant at r S < 0.3. The obtained results are relevant to high energy density physics. © 2020 The Japan Society of Applied Physics.	
122.	The Memory Effect of Microdischar ges in the Barrier Discharge in Airflow	DOI10.1134/S1063780X2 0040145 (IF=1.8;Q3 in Plasma Physics Reports)	Abstract: The paper devoted to the research of the microdischarge dynamics in the dielectric barrier discharge. The discharge between rail electrodes in airflow along the electrodes at atmospheric pressure was studied. The aim of this work is to clarify the role of volume plasma and surface charges in the memory effect of microdischarges. Based on the analysis of microdischarge images obtained using high-speed camera, it is established that the transport of microdischarge plasma by a gas flow determines the microdischarge localization in each subsequent half-cycle of the applied voltage. An important part is played by the turbulence and the presence of	Usenov, E.A., Akishev, Y.S., Petryakov, A.V., Ramazanov, T.S., Gabdullin, M.T., Ashirbek, A., Akil'dinova, A.K. The Memory Effect of Microdischarges in the Barrier Discharge in Airflow (2020) Plasma Physics Reports, 46 (4), pp. 459- 464.DOI: 10.1134/S1063780X20040145

			vortices in the airflow. They determine both the speed of plasma channel transfer and the probability of the microdischarge appearence in a specific half-cycle. The results of the work show the possibility of the gas-dynamic control for parameters of a barrier discharge. © 2020, Pleiades Publishing, Ltd.	
123.	Obtaining of carbon nanowalls in the plasma of radio-frequency discharge	DOI 10.1016/j.apsusc.2019.144 119(IF=10.7 ;Q1 in Applied Surface Science)	In this work a synthesis of carbon nanowalls (CNWs) in the plasma of argon and methane gases of capacitively coupled radio-frequency (CCRF) discharge is considered. The carbon nanowalls were synthesized by plasma enhanced chemical vapor deposition method at relatively lower values of discharge power and gas flow rate for low-cost CNWs production. The growth process of carbon nanowalls was studied at different synthesis parameters. The morphology and structure quality of obtained samples were investigated by Raman spectroscopy, scanning electron and atomic force microscopies. It was found, that at a lower value of RF power the formation	Ваtryshev, D., Yerlanuly, Y., Alpysbaeva, B., Nemkaeva, R., Ramazanov, T., Gabdullin, M. Obtaining of carbon nanowalls in the plasma of radiofrequency discharge (2020) Applied Surface Science, 503, статья № 144119,DOI: 10.1016/j.apsusc.2019.144119

			of CNWs goes better with increasing methane flow rate and further increasing RF power leads to agglomeration of nanowalls and formation of nanoclusters, which then transfer into multilayered graphene. Thus, on the basis of obtained results, a process map with different zones of deposited carbon nanostructures is developed. © 2019 Elsevier B.V.	
124.	Thin-film deposition by combining plasma jet with spark discharge source at atmospheric pressure	DOI 10.1002/ctpp.202000140(I F=2.1 ;Q2 in Contributions to Plasma Physics)	This study demonstrates a method for the deposition of CuOx thin films by combining atmospheric pressure plasma jet with spark discharge. In this type of discharge source, the bulk copper material of spark discharge electrodes plays the role of a precursor. Copper atoms and particles go through the physical processes of sputtering, evaporation, and further agglomeration and condensation in the plasma jet and on the substrate. The experiments were carried out with and without a combination of discharges. The material coated on the substrate was studied using a scanning	Ussenov, Y.A., Toktamyssova, M.T., Dosbolayev, M.K., Gabdullin, M.T., Daniyarov, T.T., Ramazanov, T.S. Thin-film deposition by combining plasma jet with spark discharge source at atmospheric pressure (2021) Contributions to Plasma Physics, 61 (3), статья № e202000140,DOI: 10.1002/ctpp.202000140.

125.	Organic Resist Contrast Determinatio n in Ion Beam Lithography	DOI 10.1134/S1063782620140 262(IF=1.3 ;Q4 in Semiconductors)	electron microscope, Raman spectroscopy, and energy-dispersive X-ray spectroscopy. The characteristics of the set-up and plasma, such as I-V curves, optical emission spectra, and substrate temperature, were also measured. Copper electrodes were examined for erosion by a scanning electron microscope. The results demonstrate that deposits coated by combined discharge show denser and thicker films. © 2020 Wiley-VCH GmbH Abstract: The feature of the promising tool of lithographic nanostructuring based on selective exposure of polymer resist by ion beam is very compact (of about tens of nanometers) beam interaction volume. Herewith the main part of beam energy is deposited in the resist and is spent to its	Shabelnikova, Y.L., Zaitsev, S.I., Gusseinov, N., Gabdullin, M., Muratov, M.M. Organic Resist Contrast Determination in Ion Beam Lithography (2020) Semiconductors, 54 (14), pp. 1854-1857.DOI: 10.1134/S1063782620140262
	Litnograpny		volume. Herewith the main part of beam energy is deposited in the resist and is spent to its modification. It causes the set of advantages specific for this method: sub-10 nanometer resolution achievable, very high energy efficiency and almost complete absence of proximity	
			effect. But also due to this feature absorbed doze essentially	

inhomogeneous in resist and the dissolution rate is strongly	
dissolution rate is strongly	
dependent on depth. So the	
common procedure of resist	
contrast determination cannot be	
applied anymore. In the present	
work a new method for resist	
contrast determination	
considering the relation between	
dissolution rate and deposited	
energy density is suggested and	
realized. By using it for PMMA	
resist irradiated by 30 keV Ga+	
ion beam the value of contrast	
was determined to be 3.1 and	
ions energy length was estimated to be 42 nm. © 2020,	
Pleiades Publishing, Ltd.	C A
126. Electrolytic DOI A fair evaluation of an Dzhunusbekov, E.J., Orazbayo	
capacitor life 10.21595/jve.2019.20733(I electrolytic capacitor time to Electrolytic capacitor life time calculations and the capacitor life time calculations are capacitor life.	
time F=1.7;Q3 in Journal of failure is important for the varying operating condition	
calculation Vibroengineering) design and development of (2020) Journal of Vibroengineering, 2	
under varying electronic devices. In practice, it 734. DOI: 10.21595/jve.2019	.20733
operating is required to consider variable	
conditions operating conditions, for	
example, weather temperature	
fluctuations or load variations.	
Based on the principle of	
Miner's fatigue accumulation	
and reasonable approximations,	
the general formulas are derived	
that take into account weather	
temperature changes. The	

			outdoor air temperature was	
			modeled by the sum of	
			components like averaged	
			seasonal changes, averaged daily	
			temperature changes and random	
			temperature fluctuations. An	
			Easy-to-use analytical formulas	
			for the electrolytic capacitor life	
			time estimation were obtained,	
			in which the contribution of each	
			individual temperature	
			phenomenon can be evaluated.	
			The impact of these components	
			on the non-linear estimation	
			formula by the Miner's principle	
			has been clarified for some	
			example climatic regions. Also,	
			the capacitor life time estimation	
			formula under particularly	
			scheduled variable load was	
			derived for example. The	
			resulting formulas are useful for	
			engineering calculations of the	
			reliability of electronic devices	
			exposed to weather temperature	
			changes. © 2020 Erlan J.	
			Dzhunusbekov, et al.	
127.	Experimental	DOI:	The first and rigorous sensitivity	Muratov, M., Myrzabekova, M., Guseinov, N.,
	investigation	10.21272/jnep.12(4).04038	comparison of the most used	Nemkayeva, R., Ismailov, D., Shabelnikova, Y.,
	of the	(IF=1,1; Q3 in Journal of	positive-tone resist (PMMA	Zaitsev, S.
	distribution	Nano- and Electronic	950K) exposure to both	Experimental investigation of the distribution of energy
	of energy	Physics)	electrons and gallium ions in a	deposited by FIB in ion-beam lithography
	deposited by		wide range of exposure doses at	

FIB in ion-	the same beam energy was	(2020) Journal of Nano- and Electronic Physics, 12 (4),
beam	carried out. It was found that the	статья № 04038, . DOI: 10.21272/jnep.12(4).04038
lithography	PMMA 950K resist has a	
	positive sensitivity of 0.15	
	μ C/cm2, which is about three	
	orders of magnitude more	
	sensitive to gallium ions than to	
	electrons, all at the same	
	conditions. At high Ga exposure	
	doses, as well as with electron	
	exposure, negative sensitivity is	
	observed. The depth of the resist	
	after etching in a solvent	
	depending on the exposure dose	
	was also studied, and based on	
	this an analytical model using	
	the absorbed energy density in	
	the form of a displaced	
	Gaussian, that allows one to	
	restore the resist contrast and the	
	energy length from experimental	
	data, was proposed. The model	
	accurately describes the both	
	experimental and simulation	
	results. It was shown that the	
	contrast for the PMMA 950K	
	resist is $\gamma \sim 3.1$ for the energies	
	of gallium ions and the energy	
	length is $Le = 43$ nm.	

128.	Ab initio	DOI:	Warm dense matter (WDM) is	Hamann, P., Vorberger, J., Dornheim, T., Moldabekov,
120.	results for the	10.1002/ctpp.202000147	an exotic state on the border	Z.A., Bonitz, M.
	plasmon	(IF=2,1; Q3 in	between condensed matter and	Ab initio results for the plasmon dispersion and
	dispersion	Contributions to Plasma	dense plasmas. Important	damping of the warm dense electron gas
	and damping	Physics)	occurrences of WDM include	(2020) Contributions to Plasma Physics, 60 (10), статья
	of the warm	T Hysics)	dense astrophysical objects,	№ e202000147, . DOI: 10.1002/ctpp.202000147
	dense		matter in the core of our Earth,	312 C202000147, 1 DOI: 10.1002/Ctpp.202000147
	electron gas		and matter produced in strong	
	cicciton gas		compression experiments. As of	
			late, x-ray Thomson scattering	
			has become an advanced tool to	
			diagnose WDM. The	
			interpretation of the data	
			requires model input for the	
			dynamic structure factor $S(q, \omega)$	
			and the plasmon dispersion $\omega(q)$.	
			Recently, the first ab initio	
			results for $S(q, \omega)$ of the	
			homogeneous warm dense	
			electron gas were obtained from	
			path integral Monte Carlo	
			simulations (Dornheim et al.,	
			Phys. Rev. Lett., 121, 255001,	
			2018). Here, we analyse the	
			effects of correlations and finite	
			temperature on the dynamic dielectric function and the	
			plasmon dispersion. Our results	
			for the plasmon dispersion and	
			damping differ significantly	
			from the random-phase	
			approximation and from earlier	
			models of the correlated electron	

			gas. Moreover, we show when commonly used weak damping approximations break down and how the method of complex zeroes of the dielectric function can solve this problem for WDM conditions.	
129.	Oblique magnetic field influence on the wakefield in complex plasmas	DOI: 10.1088/1361-6587/aba992 (IF=5,1; Q1 in Plasma Physics and Controlled Fusion)	The results of an investigation of the wakefield around a stationary charged grain in an external magnetic field with non-zero transverse component with respect to the ion flow direction is presented. In contrast to the previously reported significant suppression of the wake oscillations due to the magnetic field applied along the flow, the wake potential exhibits long range recurrent oscillations in the presence a of transverse flow to the magnetic field. Extensive analysis for a wide range of parameters elucidate a strong dependence of the wake on the orientation of the magnetic field in the sonic and supersonic regimes by manifesting sensitivity to even a meager deviation of magnetic field from the longitudinal direction. The impact of the	Sundar, S., Moldabekov, Z.A. Oblique magnetic field influence on the wakefield in complex plasmas (2020) Plasma Physics and Controlled Fusion, 62 (10), статья № 105018, . DOI: 10.1088/1361-6587/aba992

			orientation and strength of	
			magnetic field on the wake	
			behavior is assessed. The	
			deviation of the magnetic field	
			induction vector from the	
			longitudinal to ion flux direction	
			leads to the wakefield with two	
			positive peaks split in the	
			transverse to ion flow direction	
			in the downstream region;	
			similar to that of the ultracold	
			ions wake without magnetic	
			field [(2020) New J. Phys. 22	
			033028].	
130.	Morphologic	DOI	Abstract: Photoluminescent	Zhumatova, S.A., Manakov, S.M., Sagidolda, Y.,
130.	al, Structural,	10.1134/S0030400X20090	boron-doped (100)-oriented	Darmenkulova, M.B., Azamat, R.M., Alpysbaeva,
	and Optical	234(IF=1.5; Q3 in Optics	porous silicon fabricated on a p-	B.Y., Dikhanbaev, K.K.
	Properties of	and Spectroscopy (English	type silicon substrate by	Morphological, Structural, and Optical Properties of
	Silicon	translation of Optika i	electrochemical etching in a	Silicon Nanostructures Formed in a Solution
	Nanostructur	Spektroskopiya))	solution containing fluorosilicic	Containing Hydrogen Hexafluorosilicate H2(SiF6)
	es Formed in	Spektioskopiya))	acid and ethanol is studied. The	(2020) Optics and Spectroscopy, 128 (9), pp. 1487-
	a Solution			1491. DOI: 10.1134/S0030400X20090234
			morphological, structural, and	1491. DOI: 10.1154/50050400A20090254
	Containing		optical properties of silicon	
	Hydrogen		nanostructures obtained in	
	Hexafluorosil		solutions containing H2(SiF6)	
	icate		and ethanol are analyzed in	
	H2(SiF6)		comparison with the	
			corresponding characteristics of	
			samples formed in solutions of	
			HF and ethanol. The	
			morphological, structural, and	
			optical properties were studied	
			using scanning probe	

			microscopy and	
			spectrophotometry. It is shown	
			that the porous silicon samples	
			formed in solutions containing	
			H2(SiF6) and ethanol have	
			better optical properties, in	
			particular, they exhibit more	
			intense photoluminescence than	
			the samples obtained in HF–	
			ethanol solutions. © 2020,	
			Pleiades Publishing, Ltd.	
131.	Dynamic	DOI:	There is growing interest in	Hamann, P., Dornheim, T., Vorberger, J., Moldabekov,
	properties of	10.1103/PhysRevB.102.12	warm dense matter (WDM), an	Z.A., Bonitz, M.
	the warm	5150 (IF=6,5; Q1 in	exotic state on the border	Dynamic properties of the warm dense electron gas
	dense	Physical Review B)	between condensed matter and	based on ab initio path integral Monte Carlo
	electron gas	,	plasmas. Due to the	simulations DYNAMIC PROPERTIES of the WARM
	based on ab		simultaneous importance of	DENSE ELECTRON PAUL HAMANN et al.
	initio path		quantum and correlation effects,	(2020) Physical Review B, 102 (12), статья № 125150,
	integral		WDM is complicated to treat	. DOI: 10.1103/PhysRevB.102.125150
	Monte Carlo		theoretically. A key role has	·
	simulations		been played by ab initio path	
	DYNAMIC		integral Monte Carlo (PIMC)	
	PROPERTIE		simulations, and recently	
	S of the		extensive results for	
	WARM		thermodynamic quantities have	
	DENSE		been obtained. The first	
	ELECTRON		extension of PIMC simulations	
	PAUL		to the dynamic structure factor	
	HAMANN et		of the uniform electron gas was	
	al.		reported by Dornheim et al.	
			[Phys. Rev. Lett. 121, 255001	
			(2018)PRLTAO0031-	
			900710.1103/PhysRevLett.121.2	

			55001]. This was based on an accurate reconstruction of the dynamic local field correction. Here we extend this concept to other dynamical quantities of the warm dense electron gas including the dynamic susceptibility, the dielectric function, and the conductivity.	
132.	Ab initio path integral monte carlo simulation of the uniform electron gas in the high energy density regime	DOI: 10.1088/1361-6587/ab8bb4 (IF=5,1; Q1 in Plasma Physics and Controlled Fusion)	The response of the uniform electron gas (UEG) to an external perturbation is of paramount importance for many applications. Recently, highly accurate results for the static density response function and the corresponding local field correction have been provided both for warm dense matter [2019 J. Chem. Phys. 151 194104] and strongly coupled electron liquid [2020 Phys. Rev. B 101 045129] conditions based on exact ab initio path integral Monte Carlo (PIMC) simulations. In the present work, we further complete our current description of the UEG by exploring the high energy density regime, which is relevant for, e.g. astrophysical	Dornheim, T., Moldabekov, Z.A., Vorberger, J., Groth, S. Ab initio path integral monte carlo simulation of the uniform electron gas in the high energy density regime (2020) Plasma Physics and Controlled Fusion, 62 (7), статья № 075003, .DOI: 10.1088/1361-6587/ab8bb4

			applications and inertial	
			confinement fusion experiments.	
			To this end, we present	
			extensive new PIMC results for	
			the static density response in the	
			range of $0.05 \le r \le 0.5$ and 0.85	
			$\leq \theta \leq 8$. These data are	
			subsequently used to benchmark	
			the accuracy of the widely used	
			random phase approximation	
			and the dielectric theory by	
			Singwi, Tosi, Land, and	
			Sjölander (STLS). Moreover, we	
			compare our results to	
			configuration PIMC data where	
			they are available and find	
			perfect agreement with a relative	
			accuracy of 0.001-0.01%. All	
			PIMC data are available online.	
133.	Effect of	DOI	The article focuses on the	Batalova, M.S., Alpysbayeva, B.E., Korobova, N.E.
	Preliminary	10.1109/EIConRus49466.	technology of preliminary	Effect of Preliminary Aluminum Annealing on the
	Aluminum	2020.9038973	preparation of the aluminum foil	Microstructure of Anodized Aluminum Oxide Films
	Annealing on		surface with a thickness of 50	(2020) Proceedings of the 2020 IEEE Conference of
	the		μm and the actual process of	Russian Young Researchers in Electrical and
	Microstructur		electrochemical anodizing. The	Electronic Engineering, EIConRus 2020, статья №
	e of		research stage was the	9038973, pp. 2115-2118. DOI:
	Anodized		restructuring of the foil surface	10.1109/EIConRus49466.2020.9038973
	Aluminum		during thermal annealing. It was	
	Oxide Films		found that homogenization	
			annealing increases the	
			uniformity of the structure and	
			chemical composition of the	
			material. The morphology and	

Crystal structure of the anodized oxide were examined by transmission electron microscopy. The effect of heattreatment before aluminum foil anodization on the microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter Ab initio DOI 10.1063/1.5143225 (IF=3,9; Q2 in Physics of Plasmas) Warm dense matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of contents and the simultane		,		T	,
transmission electron microscopy. The effect of heat- treatment before aluminum foil anodization on the microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter DOI 10.1063/1.5143225 (IF=3,9; Q2 in Physics of Plasmas) Warm dense matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of				, · · ·	
microscopy. The effect of heat-treatment before aluminum foil anodization on the microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter 155. Plasmas) 156. Plasmas) 157. Plasmas) 158. Ab initio simulation of warm dense matter 159. Plasmas) 159. Plasmas) 159. Plasmas) 150. Incompressed matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of					
treatment before aluminum foil anodization on the microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter 10.1063/1.5143225 (IF=3,9; Q2 in Physics of Plasmas) Plasmas) Warm dense matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of					
аnodization on the microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter 155. (IF=3,9; Q2 in Physics of Plasmas) 156. (IF=3,9; Q2 in Physics of Plasmas) 157. (IF=3,9; Q2 in Physics of Plasmas) 158. (IF=3,9; Q2 in Physics of Plasmas) 159. (IF=3,9;				_ · ·	
microstructure of anodized aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter Note that the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of Marm dense aluminum oxide films has been found. © 2020 IEEE. Warm dense matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of				treatment before aluminum foil	
aluminum oxide films has been found. © 2020 IEEE. 134. Ab initio simulation of warm dense matter 10.1063/1.5143225				anodization on the	
134. Ab initio simulation of warm dense matter (BDM) - an exotic state of highly compressed matter of Plasmas) Warm dense matter (BDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of				microstructure of anodized	
Ab initio simulation of warm dense matter Ab initio simulation of warm dense matter DOI 10.1063/1.5143225 (IF=3,9; Q2 in Physics of Plasmas) Warm dense matter (WDM) - an exotic state of highly compressed matter - has attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of Bonitz, M., Dornheim, T., Moldabekov, Z.A., Zhang, S., Hamann, P., Kählert, H., Filinov, A., Ramakrishna, K., Vorberger, J. Ab initio simulation of warm dense matter (2020) Physics of Plasmas, 27 (4), статья № 042710, .				aluminum oxide films has been	
simulation of warm dense matter 10.1063/1.5143225				found. © 2020 IEEE.	
warm dense matter (IF=3,9; Q2 in Physics of Plasmas) (2020) Physics of Plasmas, 27 (4), статья № 042710, . (2020) Physics of Plasmas, 27	134.	Ab initio	DOI	Warm dense matter (WDM) - an	Bonitz, M., Dornheim, T., Moldabekov, Z.A., Zhang,
matter Plasmas) attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of Ab initio simulation of warm dense matter (2020) Physics of Plasmas, 27 (4), статья № 042710, . DOI: 10.1063/1.5143225		simulation of	10.1063/1.5143225	exotic state of highly	S., Hamann, P., Kählert, H., Filinov, A.,
matter Plasmas) attracted increased interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of Ab initio simulation of warm dense matter (2020) Physics of Plasmas, 27 (4), статья № 042710, . DOI: 10.1063/1.5143225		warm dense	(IF=3,9; Q2 in Physics of	compressed matter - has	Ramakrishna, K., Vorberger, J.
for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of		matter		attracted increased interest in	
for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of				recent years in astrophysics and	(2020) Physics of Plasmas, 27 (4), статья № 042710, .
extremely difficult to treat theoretically. This is due to the simultaneous appearance of				for dense laboratory systems. At	=
theoretically. This is due to the simultaneous appearance of				the same time, this state is	
simultaneous appearance of				extremely difficult to treat	
**				theoretically. This is due to the	
quantum daganarsay, Caylamh				simultaneous appearance of	
quantum degeneracy, Coulomb				quantum degeneracy, Coulomb	
correlations, and thermal effects,				correlations, and thermal effects,	
as well as the overlap of plasma				as well as the overlap of plasma	
and condensed phases. Recent				and condensed phases. Recent	
breakthroughs are due to the					
successful application of density				successful application of density	
functional theory (DFT)				functional theory (DFT)	
methods which, however, often				methods which, however, often	
lack the necessary accuracy and					
predictive capability for WDM				predictive capability for WDM	
applications. The situation has					
changed with the availability of					
the first ab initio data for the				the first ab initio data for the	
exchange-correlation free energy				exchange-correlation free energy	

of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations; for recent reviews, see Dornheim et al., Phys. Plasmas 24, 056303 (2017) and Phys. Rep. 744, 1-86 (2018). In the present article, we review recent further progress in OMC simulations of the warm dense UEG: namely, ab initio results for the static local field correction G(q) and for the dynamic structure factor S (q, ω). These data are of key relevance for comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper, we discuss the simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT, and hydrodynamics. Here, we analyze the strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all

T		
	methods. A particular role might	
	be played by quantum	
	hydrodynamics, and we	
	concentrate on problems, recent	
	concentrate on problems, recent	
	progress, and possible	
	improvements of this method.	
	-	

135.	Ultracold	DOI	Motivated by the recent	Sundar, S., Moldabekov, Z.A.
	ions wake in	10.1088/1367-	experimental realization of	Ultracold ions wake in dusty plasmas
	dusty	2630/ab7bd2 (IF=6,1; Q1	ultracold dusty plasma (2019	(2020) New Journal of Physics, 22 (3), статья №
	plasmas	in New Journal of Physics)	Sci. Rep. 9 3261), we present the	033028, . DOI: 10.1088/1367-2630/ab7bd2
	F		results of particle-in-cell	
			simulation with Monte-Carlo-	
			collisions for wake behind a dust	
			particle due to focusing of ions	
			at superfluid helium temperature	
			(2 K). Dynamical screening	
			(wakefield) defines structural	
			and dynamical properties of	
			charged dust particles in plasmas	
			such as phase transition, crystal	
			formation, vibration modes	
			(waves) etc. Here, we delineate	
			in detail the dependence of wake	
			strength on the streaming	
			velocity of ions and on the ion-	
			neutral charge exchange	
			collision frequency (neutrals	
			density) in the ultracold dusty	
			plasma. Lowering the	
			temperature to ultracold level	
			leads to a wake pattern behind a	
			dust particle that completely	
			differs from the wake at normal	
			conditions. For wide range of	
			parameters, most remarkable	
			features of the wakefield are (i)	
			the formation of wake pattern	
			with two maxima split in	
			transverse to ion flow direction	

	,			
			in the downstream area, (ii)	
			pronounced inverse V shape of	
			the wakefield closely resembling	
			the wake in quark-gluon plasma	
			and dense quantum plasma	
			(warm dense matter), and (iii)	
			the inter-dust attraction region in	
			transverse direction. The latter	
			shows that molecule-like	
			interaction between dust	
			particles is realized in ultracold	
			dusty plasmas. These	
			observations show a	
			fundamental difference of	
			ultracold dusty plasma physics	
			from well studied complex	
			plasmas at normal conditions.	
136.	Plasma-grain	DOI	The present particle-in-cell	Sundar, S., Moldabekov, Z.A.
130.	interaction in	10.1063/1.5135352	simulation for grain-plasma	Plasma-grain interaction in ultracold complex plasmas
	ultracold	(IF=3,9; Q2 in Physics of	interaction at cryogenic	(2020) Physics of Plasmas, 27 (3), статья № 033701, .
	complex	Plasmas)	temperatures springs from recent	DOI: 10.1063/1.5135352
	plasmas	T lusinus)	experimental realization of	DOI: 10.1003/1.3133332
	piasmas		ultracold dusty plasmas with	
			atoms and ions at superfluid	
			helium temperatures. In this	
			work, we discuss the results of	
			particle-in-cell simulations	
			(taking into account ion-atom	
			collisions) for dust particle	
			charge, ion drag force, and	
			interaction between grains in	
			ultracold dusty plasmas. The	
			airracola dusty plasifias. The	

single grain as well as two grain system is investigated, considering both streaming ions and equilibrium ions. The dependence of plasma mediated inter-grain interactions on the streaming velocity of ions and inter-particle separation is delineated in detail. Additionally, ion density distribution around grains is discussed. The interactions at cryogenic temperatures are distinct from those at room temperature by their differences in magnitude and interaction mechanism details. Most remarkable features are (i) the inter-grain attraction in equilibrium plasmas due to plasma absorption on the surface of grains, (ii) the ion drag force directed against ion streaming velocity in the case of a single dust particle, and (iii) non-linear response of the plasma polarization around grains with an increase in the streaming velocity of ions.

137.	Plasma Diagnostics on Pulse Plasma- Focus Generators and Their Features as Alternative Fusion Reactors	DOI10.1080/15361055.20 21.1916273 (IF=2.2;Q2 in Fusion Science and Technology)	This paper is devoted to discussing the technical characteristics of pulsed plasmafocus (PF) generators and their features as fusion reactors as an alternative for stationary thermonuclear installations. First, the authors present results of experimental data obtained on the Pulse Plasma Accelerator—30 (PPA-30) and dense PF-4 devices. The pulse discharge current and jumped parameters and the energy distribution along and across the axis on the 31-kJ (at 30 kV and 69 µF) PPA-30 device were determined. It is indicated that plasma already is completely ionized at the kiloampere range and its inductance is small. The maximum energy density of the plasma was equal to 230 J/cm2 and a macrofocusing effect was observed. Second, the emission parameters of the PF-4 device were determinate. The neutron yield was equal to about 107 imp/shot. The variation of the axial and radial neutron yield was observed. Further, the problems of neutron yield on PF devices and options for the	Zhukeshov, A.M., Moldabekov, Z.M., Ibraev, B.M., Amrenova, A.U., Gabdullina, A.T. Plasma Diagnostics on Pulse Plasma-Focus Generators and Their Features as Alternative Fusion Reactors (2021) Fusion Science and Technology, 77 (5), pp. 359-365. DOI: 10.1080/15361055.2021.1916273
------	--	--	--	---

			development of a fusion reactor taking into account other technical capabilities of PF are discussed. It is proposed to develop the design of PF in such a way as to take into account the peculiarities of the interaction of particles with an electric and magnetic field. In this situation, the important indicator is not the temperature of the plasma, but the geometry of the electrode system to provide a directed flow of particles. © 2021 American Nuclear Society.	
138.	Plasma with carbon nanoparticles : Advances and application	DOI 10.1088/1361- 6528/ac1a40 (IF=5,8; Q1 in Nanotechnology)	This article is devoted to the study of the glow intensity of radio-frequency capacitive discharge plasma with nanoparticles for further use in lighting devices. The process of carbon nanoparticles synthesis in the radiofrequency discharge was investigated, and the influence of plasma parameters on the formation and growth of the material was also studied. A method for determining the diameter of nanoparticles based	Orazbayev, S., Yerlanuly, Y., Utegenov, A., Moldabekov, Z., Gabdullin, M., Ramazanov, T. Plasma with carbon nanoparticles: Advances and application (2021) Nanotechnology, 32 (45), статья № 455602, . DOI: 10.1088/1361-6528/ac1a40

			on self-bias voltage and electron density is considered. It is revealed that the diameter of nanoparticles has a considerable influence on the optical properties of the plasma, in particular, on the emission intensity. Based on the obtained data, laboratory samples of lighting devices with improved luminous intensities were developed.	
139.	Ion core effect on scattering processes in dense plasmas	DOI 10.1063/5.0059297 (IF=3,9; Q2 in Physics of Plasmas)	A pseudopotential approach was used to study the effect of an ionic core on the electron-ion scattering in dense plasmas. Screening of the ion charge is taken into account using the density response function in the long wavelength limit. Additionally, the effect of electronic non-ideality is included using the compressibilty sum-rule connecting the local field correction and the exchange-correlation part of the electronic free energy density. Using a screened pseudopotential, we have computed electron-ion scattering phase shifts, the total elastic scattering cross section, and the transport cross section. It	Ramazanov, T.S., Kodanova, S.K., Nurusheva, M.M., Issanova, M.K. Ion core effect on scattering processes in dense plasmas (2021) Physics of Plasmas, 28 (9), статья № 092702, . DOI: 10.1063/5.0059297

			is found that the ionic core leads to the strong decrease in the scattering cross sections. Additionally, it is shown that the transport cross section has a non-monotonic dependence on the variation of the ionic core field parameters.	
140.	Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure	DOI 10.1016/j.ijhydene.2021.0 5.069 (IF=9,0; Q1 in International Journal of Hydrogen Energy)	A statistical theory of the MgCeCo4–H2 system has been developed for hydrogenation and phase transitions under pressure. The free energy value is calculated. The equation of thermodynamic equilibrium is obtained. The temperature of the order-disorder phase transition is estimated. Isotherms and Isoplethes of hydrogen absorption-desorption are constructed. The possibility of a hysteresis effect is established. The temperature dependence of the hydrogen solubility is found taking into account the phase transition configuration heat capacity. The calculated and experimental graphs of the sorption isotherm are of a similar nature.	Matysina, Z.A., Gavrylyuk, N.A., Kartel, M., Veziroglu, A., Veziroglu, T.N., Pomytkin, A.P., Schur, D.V., Ramazanov, T.S., Gabdullin, M.T., Zolotarenko, A.D., Zolotarenko, A.D., Shvachko, N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure (2021) International Journal of Hydrogen Energy, 46 (50), pp. 25520-25532 DOI: 10.1016/j.ijhydene.2021.05.069

141.	Rotation of dust particles in an inhomogeneo us weak magnetic field in a DC glow discharge	DOI 10.1063/5.0052905 (IF=3,9; Q2 in Physics of Plasmas)	We report an explanation for the opposite direction of the rotation of the charged dust particles above and below the Helmholtz coil in an inhomogeneous weak magnetic field in the direct current glow discharge. Experiments with monodispersed melamineformaldehyde particles were performed in an argon plasma in an inhomogeneous weak magnetic field (with the induction values 4, 12, and 18). The linear and angular velocities of rotational motion of the clusters of dust particles formed in regions with an inhomogeneous weak magnetic field above and below the Helmholtz coil were analyzed. The peculiarity is that the directions of rotation in these areas are opposite, whereas there is no rotational motion in the region of a uniform magnetic field. To explain these observations, the theoretical model that takes into account the magnetic field inhomogeneity and provides good agreement with experimental data is presented. © 2021 Author(s).	Abdirakhmanov, A.R., Bastykova, N.K., Kodanova, S.K., Ramazanov, T.S. Rotation of dust particles in an inhomogeneous weak magnetic field in a DC glow discharge (2021) Physics of Plasmas, 28 (7), статья № 074503, . DOI: 10.1063/5.0052905
------	--	---	---	--

142.	The study of deuterium permeability of film-forming inhibitors with the addition of fullerenes	DOI 10.1016/j.ijhydene.2020.1 1.241 (IF=9,0; Q1 in International Journal of Hydrogen Energy)	In this work, the results of the hydrogen permeability study of a composite film-forming inhibitor are considered. Film-forming inhibitor consists of polyether urethane and synthesized fullerenes C60 and C70 in pure form. Two types of samples were used: uncoated and coated stainless steels with composite polyether urethane/fullerene varnish. The experimental work was based on the study of the dependence of the permeation reduction factor on the temperature in the reactor. For the coated sample, the minimum temperature was 623 K at which the deuterium flux was registered. Here we assume that at temperatures below 573 K the output pressure caused by the deuterium flow through the sample is less than 10–10 Pa. The rate of steady-state flow through a coated sample is significantly lower than for an uncoated one at temperatures 573–673 K. The deuterium penetration rates through the two samples increase and reach similar	Akhanova, N., Yerlanuly, Y., Batryshev, D., Kulsartov, T., Chikhray, Y., Ramazanov, T., Veziroglu, A., Schur, D., Kang, W., Gabdullin, M. The study of deuterium permeability of film-forming inhibitors with the addition of fullerenes (2021) International Journal of Hydrogen Energy, 46 (10), pp. 7426-7431. DOI: 10.1016/j.ijhydene.2020.11.241
------	--	--	--	--

			stationary values starting at 723 K.	
143.	Methods of theoretical calculations and of experimental researches of the system atomic hydrogen — metal	DOI 10.1016/j.ijhydene.2021.0 3.065 (IF=9,0; Q1 in International Journal of Hydrogen Energy)	All the main directions of energy development suggest or already implement the use of hydrogen. In addition, the interaction of low-energy hydrogen atoms with metals is also of considerable interest, both from the point of view of fundamental research and in connection with the operation of large tokamaks and thermonuclear reactors. The paper presents a literature review of the features of the interaction of hydrogen with metals. It is shown that metal-hydrogen reactions, which lead to the formation of metal hydrides, are considered as a special type of such interaction. Modern methods of	Zolotarenko, A.D., Zolotarenko, A.D., Veziroglu, A., Veziroglu, T.N., Shvachko, N.A., Pomytkin, A.P., Schur, D.V., Gavrylyuk, N.A., Ramazanov, T.S., Akhanova, N.Y., Gabdullin, M.T. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen — metal (2021) International Journal of Hydrogen Energy, . DOI: 10.1016/j.ijhydene.2021.03.065

144.	The use of ultrapure	DOI 10.1016/j.ijhydene.2021.0	experimental study of heterogeneous reactions, topochemistry of metal - hydrogen reactions, dependences of the rate of interaction on pressure and temperature are considered, models of surface processes occurring during the interaction of hydrogen with a metal are discussed. A kinetic method for studying the mechanism of interaction of atomic hydrogen with hydride- forming metals is proposed. COVID-19 is a disease caused by the SARS-CoV virus. It	Zolotarenko, A.D., Zolotarenko, A.D., Veziroglu, A., Veziroglu, T.N., Shvachko, N.A., Pomytkin, A.P.,
	molecular	3.025 (IF=9,0; Q1 in	stands for severe acute	Gavrylyuk, N.A., Schur, D.V., Ramazanov, T.S.,
	hydrogen	International Journal of	respiratory syndrome, which	Gabdullin, M.T.
	enriched with	Hydrogen Energy)	affects the lungs. The process of	The use of ultrapure molecular hydrogen enriched with
	atomic		replication and progression of	atomic hydrogen in apparatuses of artificial
	hydrogen in		the COVID-19 virus causes the	lung ventilation in the fight against virus COVID-19
	apparatuses		formation of an excessive	(2021) International Journal of Hydrogen Energy, .
	of artificial		amount of reactive oxygen	DOI: 10.1016/j.ijhydene.2021.03.025
	lung ventilation in		species and inflammation. Many studies have been carried out	
	the fight		that have demonstrated that	
	against virus		hydrogen has strong anti-	
	COVID-19		inflammatory properties. It	
			reduces hypotension and other	
			symptoms by reducing	
			inflammation and oxidative	
			stress. Oxygen mixture, enriched	
			with Hydrogen, - helps to reduce	

the resistance of the respiratory tract and frees up access to the pulmonary alveolus, which improves the penetration of oxygen into the lungs. Since hydrogen is an antioxidant, it helps to reduce the burden on the immune system, helps to maintain the body's health and its ability to quickly recover. When electrolysers are used to produce an oxygen-hydrogen mixture, alkaline mist and other impurities can enter the patient's lungs and cause poisoning and chemical burns. For this reason, the use of atomic hydrogen obtained from metal hydride sources for ventilation of the lungs will be more effective for treating COVID-19 than a molecular hydrogen-oxygen mixture from an electrolyzer. A functional diagram of a metal hydride source of atomic hydrogen to an artificial lung ventilator is shown. It is possible to create a series of hydrogen storage tanks of various capacities.

14	5. Investigation of the Evolution of Be, Ni, Mo, and W Dust Grains in Fusion Plasma	DOI 10.1134/S1063780X21010 049 (IF=1,8; Q3 in Plasma Physics Reports)	In this work, evolution of dust grains from different materials used in fusion energy installations was studied and a model was constructed that describes the generation of dust. The model accounts for the thermochemical, electrical, and other properties of the materials of the fusion reactor wall. It was shown that the dominant process that leads to the decrease in dust grain mass is the thermal evaporation, which is determined by the saturated vapor pressure at thermal equilibrium temperature. Estimates of the lifetime of dust grains from different materials were obtained depending on plasma parameters. The findings of this work can be useful for estimates of the length of penetration of dust grains into the reactor. The difference in the dynamics of particles from light and heavy elements was shown. Out of the four elements under study (Be, Ni, Mo, and W), nickel grains demonstrate the highest penetrating ability due to their long lifetime and moderate weight.	Bastykova, N.K., Golyatina, R.I., Kodanova, S.K., Ramazanov, T.S., Maiorov, S.A. Investigation of the Evolution of Be, Ni, Mo, and W Dust Grains in Fusion Plasma (2021) Plasma Physics Reports, 47 (1), pp. 92-95. DOI: 10.1134/S1063780X21010049
----	---	--	---	--

146.	Dust- Acoustic Wave Dispersion in Thermal Dusty Plasmas at Weak and Moderate Couplings	DOI 10.1109/TPS.2021.307834 4 (IF=2,4; Q2 in IEEE Transactions on Plasma Science)	The dispersion of dust-acoustic waves (DAWs) in weakly and moderately coupled thermal dusty plasmas is studied in the framework of the linear density-response formalism with the static local-field correction for interdust interactions. The plasma medium composition and the charge of dust particles are simultaneously determined within a recently developed chemical model (Physical Review E, vol. 101, 063203, 2020) based on minimizing the Helmholtz free energy of the system under investigation. Stemming from the generalized Poisson-Boltzmann equation, the renormalization procedure is consistently applied to derive an interdust screened potential that takes into account the finiteness of dust grains. Within the framework of the Ornstein-Zernike relationship in the hypernetted chain approximation, the static structure factor of the dust component is evaluated to manifest the appearance of local extrema on its wavenumber dependence, thereby indicating	Davletov, A., Kurbanov, F., Mukhametkarimov, Y., Yerimbetova, L. Dust-Acoustic Wave Dispersion in Thermal Dusty Plasmas at Weak and Moderate Couplings (2021) IEEE Transactions on Plasma Science, 49 (6), статья № 9439058, pp. 2000-2007. DOI 10.1109/TPS.2021.3078344
------	--	---	---	--

			the short-range order formation in the arrangement of dust particles with respect to one another. It is shown that the DAW dispersion law is completely governed by the static structure factor and, therefore, exhibits a nonmonotonic dependence on the wavenumber as well. In the long-wavelength limit, the acoustic-like behavior of the DAW dispersion is strictly confirmed and the corresponding phase speed, reduced in units of the dust thermal velocity, is ultimately expressed via the static structure factor at zero wavenumber.	
147.	Self-bias voltage formation and charged particle dynamics in multi- frequency capacitively coupled plasmas	DOI 10.1063/5.0055444 (IF=2,6; Q2 in AIP Advances)	In this work, we analyze the creation of the discharge asymmetry and the concomitant formation of the DC self-bias voltage in capacitively coupled radio frequency plasmas driven by multi-frequency waveforms as a function of the electrode surface characteristics. For the latter, we consider and vary the coefficients that characterize the elastic reflection of electrons from the surfaces and the ion-induced secondary electron	Masheyeva, R.U., Dzhumagulova, K.N., Myrzaly, M., Schulze, J., Donkó, Z. Self-bias voltage formation and charged particle dynamics in multi-frequency capacitively coupled plasmas (2021) AIP Advances, 11 (7), статья № 075024, . DOI: 10.1063/5.0055444

i	1		
		yield. Our investigations are	
		based on particle-in-cell/Monte	
		Carlo collision simulations of	
		the plasma and on a model that	
		aids the understanding of the	
		computational results. Electron	
		reflection from the electrodes is	
		found to slightly affect the	
		discharge asymmetry in the	
		presence of multi-frequency	
		excitation, whereas secondary	
		electrons cause distinct changes	
		to the asymmetry of the plasma	
		as a function of the phase angle	
		between the harmonics of the	
		driving voltage waveform and as	
		a function the number of these	
		harmonics.	

148.	Insights on Desired Fabrication Factors from Modeling Sandwich and Quasi- Interdigitated Back-Contact Perovskite Solar Cells	DOI 10.1021/acsaem.0c02120 (IF=5,4; Q1 in ACS Applied Energy Materials)	A numerical simulation method is used to investigate the optical and electrical properties of both conventional sandwich and quasi-interdigitated back-contact (QIBC) perovskite solar cells (PSCs). The results reveal the fundamental physics of PSCs with different architectures, exhibiting their difference in working principle and device properties. A two-dimensional optical model, which takes into account both the electromagnetic and electronic properties of various device layers, is selected to accurately describe the device optical properties and to achieve more comprehensive simulations of solar cell properties under different device working conditions. Different carrier recombination mechanisms for two kinds of PSC architectures are also compared. The conditions under which the electrical properties of the perovskite photo-absorber layer enable QIBC PSCs to operate competitively or exhibit better device performance compared to the sandwich PSCs are examined in detail. The case of	Shalenov, E.O., Dzhumagulova, K.N., Seitkozhanov, Y.S., Ng, A., Valagiannopoulos, C., Jumabekov, A.N. Insights on Desired Fabrication Factors from Modeling Sandwich and Quasi-Interdigitated Back-Contact Perovskite Solar Cells (2021) ACS Applied Energy Materials, 4 (2), pp. 1093-1107. DOI: 10.1021/acsaem.0c02120
------	--	--	---	--

	QIBC PSCs with various combinations of charge-selective layers is analyzed to provide an insight into materials selection for achieving high-efficiency QIBC PSCs. It is found that power conversion efficiencies more than 25% can be potentially achieved for CH3NH3PbI3-based QIBC PSCs after careful optimization of materials selection and device fabrication. The findings of this work can be used as a guideline for the design and fabrication of high-performance QIBC PSCs. © 2021 American Chemical Society.	
--	--	--

149.	The evaluation of an asymptotic solution to the sommerfeld radiation problem using an efficient method for the calculation of sommerfeld integrals in the spectral domain	DOI 10.3390/electronics101113 39 (IF=2,7; Q2 in Electronics (Switzerland))	A recently developed high- frequency asymptotic solution for the famous "Sommerfeld radiation problem" is revisited. The solution is based on an analysis performed in the spectral domain, through which a compact asymptotic formula describes the behavior of the EM field, which emanates from a vertical Hertzian radiating dipole, located above flat, lossy ground. The paper is divided into two parts. We first demonstrate an efficient technique for the accurate numerical calculation of the well-known Sommerfeld integrals. The results are compared against alternative calculation approaches and validated with the corresponding Norton figures for the surface wave. In the second part, we introduce the asymptotic solution and investigate its performance; we compare the solution with the accurate numerical evaluation for the received EM field and with a more basic asymptotic solution to the given problem, obtained via the application of the	Bourgiotis, S., Frangos, P., Sautbekov, S., Pshikov, M. The evaluation of an asymptotic solution to the sommerfeld radiation problem using an efficient method for the calculation of sommerfeld integrals in the spectral domain (2021) Electronics (Switzerland), 10 (11), статья № 1339, . DOI: 10.3390/electronics10111339
------	---	--	--	--

			Stationary Phase Method. Simulations for various frequencies, distances, altitudes, and ground characteristics are illustrated and inferences for the applicability of the solution are made. Finally, special cases leading to analytical field expressions close as well as far from the interface are examined.	
150.	Diffraction Radiation	DOI 10.2528/PIERB21042704	The paper is focused on reliable	Sirenko, Y., Sautbekov, S., Yashina, N., Sirenko, K.
	Generated by	(IF=2,0; Q3 in Progress In	modeling and analysis of the effects connected with the	Diffraction Radiation Generated by a Density- Modulated Electron Beam Flying over the Periodic
	a Density-	Electromagnetics Research	resonant transformation of the	Boundary of the Medium Section. IV. Structures of
	Modulated	B)	field of a plane and density-	Finite Thickness
	Electron	B)	modulated electron beam flying	(2021) Progress In Electromagnetics Research B, 92, p.
	Beam Flying		over the periodic rough	149. DOI: 10.2528/PIERB21042704
	over the		boundary of a natural or	119. BOI. 10.2320/11ERB21012701
	Periodic		artificial medium. In the paper,	
	Boundary of		such a medium occupies a part	
	the Medium		of the half-space, limited in	
	Section. IV.		thickness. Therefore, the	
	Structures of		numerous effects appeared due	
	Finite		to transverse (in the thickness of	
	Thickness		the periodic structure)	
			resonances, and the coupling of	
			eigen regimes of two different	

			periodic interfaces also contributes to the anomalies appearing due to excitation of the surface eigen waves of the periodic boundary interface that had been discussed in previous papers of this series.	
Ra Gen a I Mo E Bea o P Boo the Sec An	iffraction adiation nerated by Density- odulated Electron am Flying over the Periodic undary of Medium ction. III. nomalous Resonant tenomena	DOI 10.2528/pierb21022101 (IF=2,0; Q3 in Progress In Electromagnetics Research B)	The paper is focused on the reliable analysis of the phenomena associated with the resonant and anomalous transformation of the field of a plane, density modulated electron beam, flying over the periodically rough boundary of a natural or artificial medium, in the field of bulk outgoing waves. The physical results presented here have been obtained as the result of numerical implementation of the rigorous mathematical models described in the two first papers of this series. The corresponding analytical constructions have been associated with the correct formulation of model problems and their algorithmization, with the provision of the possibility	Sirenko, Y., Sautbekov, S., Yashina, N., Sirenko, K. Diffraction Radiation Generated by a Density- Modulated Electron Beam Flying over the Periodic Boundary of the Medium Section. III. Anomalous and Resonant Phenomena (2021) Progress In Electromagnetics Research B, 91, pp. 143-155. DOI: 10.2528/pierb21022101

			interpretation of the results of their numerical solution.	
152.	Diffraction Radiation Generated by a Density- Modulated Electron Beam Flying over the Periodic Boundary of the Medium Section. II. Impact of True Eigen Waves	DOI 10.2528/PIERB20110106 (IF=2,0; Q3 in Progress In Electromagnetics Research B)	This paper is the continuation and development of the discussion started in our previous work with the same title. For the first time, eigen waves of the plane boundary separating vacuum and an artificial plasma-like medium are considered in reasonably substantiated way and in a sufficiently extensive and profound volume. The possibility of extending the results obtained for a plane boundary to the case of a weakly profiled periodically uneven boundary is shown. This paper demonstrates the potential and urge to use the analytical results in the studies of the resonant transformation of the field of a plane, density modulated electron beam flying over a	Sirenko, Y., Sautbekov, S., Yashina, N., Sirenko, K. Diffraction Radiation Generated by a Density- Modulated Electron Beam Flying over the Periodic Boundary of the Medium Section. II. Impact of True Eigen Waves (2021) Progress In Electromagnetics Research B, 90, pp. 9-17. DOI: 10.2528/PIERB20110106

			periodically uneven boundary of a natural or artificial medium in the field of bulk outgoing waves.	
Go a M Bo th	Diffraction Radiation Generated by a Density- Modulated Electron Geam Flying over the Periodic Boundary of the Medium Section. I. Analytical Basis	DOI 10.2528/PIERB20110105 (IF=2,0; Q3 in Progress In Electromagnetics Research B)	The paper is focused on reliable modeling of the effects associated with the resonant transformation of the field of a plane, density modulated electron beam, flying over the periodically uneven boundary of a natural or artificial medium, in the field of volume outgoing waves. Here, the general information (analytical basis) is presented on the peculiarities and principal characteristics of electromagnetic fields arising in the situations under consideration, on the procedures for regularization of model boundary value problems describing these situations, and on possible eigen modes of periodic structures. Without relying on this information, it is impossible to advance	Sirenko, Y., Sautbekov, S., Yashina, N., Sirenko, K. Diffraction Radiation Generated by a Density- Modulated Electron Beam Flying over the Periodic Boundary of the Medium Section. I. Analytical Basis (2021) Progress In Electromagnetics Research B, 90, pp. 1-83. DOI: 10.2528/PIERB20110105

			considerably effectively in	
			solving numerous urgent	
			physical problems (establishing	
			the conditions providing	
			anomalously high levels of	
			Vavilov-Cherenkov and/or	
			Smith-Purcell radiation;	
			diagnostics of beams of charged	
			particles, artificial materials and	
			media) and in practical	
			implementation of new	
			knowledge about the effects of	
			diffraction radiation and their	
			wave analogues in new devices	
			and instruments of	
			optoelectronics, high-power	
			electronics, antenna, and	
			accelerator technology.	
154.	A New	DOI	Galvanically isolated	Dzhunusbekov, E., Orazbayev, S.
	Passive	10.1109/TPEL.2021.30561	photovoltaic (PV)	A New Passive Lossless Snubber
	Lossless	89 (IF=14,5; Q1 in IEEE	microinverters based on single-	(2021) IEEE Transactions on Power Electronics, 36 (8),
	Snubber	Transactions on Power	stage flyback topology have	статья № 9345462, pp. 9263-9272. DOI:
		Electronics)	advantages: simplicity, better	10.1109/TPEL.2021.3056189
			reliability, and low cost. But	
			isolated flyback topology comes	
			with voltage stresses on	
			semiconductor switches caused	
			by transformer leakage	
			inductance. An improved	
			regenerative snubber has been	
			proposed to meet the ever-	
			growing demand for higher	
			efficiency of PV microinverters.	

			The proposed topology is the inductor-capacitor-diode (LCD) snubber with flying capacitor modified to reduce circulating currents. Theoretical analysis reveals a number of advantages. Experimental results are presented to verify the performance.	
155.	Analytical representation of the local field correction of the uniform electron gas within the effective static approximation	DOI 10.1103/PhysRevB.103.16 5102 (IF=4,3; Q1 in Physical Review E)	The description of electronic exchange-correlation effects is of paramount importance for many applications in physics, chemistry, and beyond. In a recent paper, Dornheim et al. [Phys. Rev. Lett. 125, 235001 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.2 35001] have presented the effective static approximation (ESA) to the local field correction (LFC), which allows for the highly accurate estimation of electronic properties such as the interaction energy and the static structure factor. In this work, we give an analytical parametrization of the LFC within ESA that is valid for any wave number, and available for the entire range of densities (0.7≤rs≤20) and temperatures (0≤θ≤4) that are relevant for	Dornheim, T., Moldabekov, Z.A., Tolias, P. Analytical representation of the local field correction of the uniform electron gas within the effective static approximation (2021) Physical Review B, 103 (16), статья № 165102, .DOI: 10.1103/PhysRevB.103.165102

applications both in the ground state and in the warm dense matter regime. A short implementation in python is provided, which can easily be incorporated into existing codes. In addition, we present an extensive analysis of the performance of ESA regarding the estimation of various quantities like the dynamic structure factor, static dielectric function, the electronically screened ion potential, and also the stopping power in an electronic medium. In summary, we find that the ESA gives an excellent description of all these quantities in the warm dense matter regime, and only becomes inaccurate when the electrons start to form a strongly correlated electron liquid $(rs\sim20)$. Moreover, we note that the exact incorporation of exact asymptotic limits often leads to a superior accuracy compared to the neural-net representation of the static LFC [T. Dornheim, J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013].

156.	Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions	DOI 10.1002/ctpp.202000176 (IF=2,1; Q3 in Contributions to Plasma Physics)	The screening of a test charge by partially degenerate non-ideal free electrons at conditions related to warm dense matter and dense plasmas is investigated using linear response theory and the local field correction based on ab initio Quantum Monte-Carlo simulations data. The analysis of the obtained results is performed by comparing to the random phase approximation and the Singwi-Tosi-Land-Sjölander approximation. The applicability of the long-wavelength approximation for the description of screening is investigated. The impact of electronic exchange-correlations effects on structural properties and the applicability of the screened potential from linear response theory for the simulation of the dynamics of ions are discussed.	Moldabekov, Z.A., Dornheim, T., Bonitz, M. Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions (2021) Contributions to Plasma Physics, . DOI: 10.1002/ctpp.202000176
------	--	--	---	---

157.	Electro- physical properties of porous anodic alumina films for sensitive elements of MEMS	DOI 10.1088/1742- 6596/1954/1/012021 (IF=0,7; Q4 in Journal of Physics: Conference Series)	The results of a comprehensive study of porous alumina film electrical properties obtained by anodizing in acid electrolytes have been presented. The relationship was established between the structure of oxide films, the mechanism of their formation, as well as physicochemical characteristics. A targeted effect on the microstructure of the films made it possible to control their properties by varying the technological parameters without a radical change in the method. This made it possible to predict the behavior of nanostructures and properties for sensitive MEMS elements.	Korobova, N.E., Batalova, M.S., Alpysbayeva, B.E. Electro-physical properties of porous anodic alumina films for sensitive elements of MEMS (2021) Journal of Physics: Conference Series, 1954 (1), статья № 012021, . DOI: 10.1088/1742-6596/1954/1/012021
158.	Influence of the drying method on the structure of aluminum oxide capillary-porous nanomembra nes	DOI 10.1088/1742- 6596/1954/1/012001 (IF=0,7; Q4 in Journal of Physics: Conference Series)	Porosity characteristics are widely used to assess the internal structure of nanomembranes. The membrane was considered complex in the analysis of the structure. The membrane was presented in a simplified way as a system interacting with a dispersion medium, for example, water. A physicochemical model of the membrane has been proposed, which allows one to study the	Batalova, M.S., Korobova, N.E., Alpysbayeva, B.E. Influence of the drying method on the structure of aluminum oxide capillary-porous nanomembranes (2021) Journal of Physics: Conference Series, 1954 (1), статья № 012001, . DOI: 10.1088/1742-6596/1954/1/012001

			logical and structural similarity between systems, the properties of which are known, with similar systems, but with unknown properties. We have chosen a simple mechanical model of a membrane permeable to liquid and gas molecules. Permeability was determined by the characteristics of the porosity, shape, and size of the pores.	
159.	Dependence of the Pore Wall Thickness on the Anodizing Process Parameters for Nanoporous Alumina Membranes	DOI 10.1109/ElConRus51938.2 021.9396213	The paper presents experimental results related to the preparation of a nanoporous membrane-based on nanoporous alumina. The results of the dependence of the nanomembrane structural parameters on the parameters of the anodizing process have been obtained. Nano-membranes based on metal oxides are promising materials in the field of materials science and nanotechnology. The formation of ideal nanoporous membranes depends on the control of the anodizing process parameters and on the starting materials.	Batalova, M., Alpysbayeva, B., Korobova, N.E. Dependence of the Pore Wall Thickness on the Anodizing Process Parameters for Nanoporous Alumina Membranes (2021) Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, статья № 9396213, pp. 2419-2422. DOI: 10.1109/ElConRus51938.2021.9396213

160.	Study of the Structural Features of Nanofibers of Nanoporous Aluminum Oxide Using Optical Microscopy	DOI 10.1109/ElConRus51938.2 021.9396392	Optical microscopy is currently one of the widely used methods used to study micro-and nanostructured materials. Despite the fact that optical microscopy is inferior in resolving power to atomic force and scanning electron microscopy, in most cases this method makes it possible to efficiently investigate various structures. Nanofibers based on nanoporous alumina are of interest as a hydrophobic surface. Therefore, the study of its structural features is a promising research work.	Meruyert, K., Alpysbayeva, B., Smirnov, V. Study of the Structural Features of Nanofibers of Nanoporous Aluminum Oxide Using Optical Microscopy (2021) Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, статья № 9396392, pp. 2455-2458. DOI: 10.1109/ElConRus51938.2021.9396392
161.	Etching of the	DOI 10.1109/ElConRus51938.2	This work is related to the treatment of the surface of	Amirbekova, G., Alpysbayeva, B., Erlanuly, E., Smirnov, V.
	Aluminum Foil Surface Using High- Frequency Plasma to Produce a Nanoporous Aluminum Oxide Membrane	021.9396575	aluminum foil with plasma in a high-frequency discharge and the formation of a nanoporous aluminum oxide membrane based on it using an electrochemical anodizing process. It was known that after plasma etching, tracks were formed on the surface of aluminum foil. It is established that these changes will depend on the power of the high-frequency discharge. The surface of aluminum foil treated with	Etching of the Aluminum Foil Surface Using High-Frequency Plasma to Produce a Nanoporous Aluminum Oxide Membrane (2021) Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, статья № 9396575, pp. 2411-2414. DOI: 10.1109/ElConRus51938.2021.9396575

	plasma and nanoporous aluminum oxide membranes formed after electrochemical anodizing were studied using scanning electron microscopy.	